PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Brace for variability in tool positioning: Modeling and simulation of 1 DoF needle insertion task under tool-braced condition

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Erroneous human arm motion leads to inaccuracy in tool positioning which often affects the quality of many precision manipulation tasks. Variability in tool endpoints during mechanical interactions among humans, tools, and environments can be reduced by bracing strategies; therefore, such a cost-effective approach may increase accuracy and reproducibility in human arm movements and thus prove useful in improving performance of selected interactive tasks. Although a great number of works is found in the literature related to performance augmentation of braced robotic manipulators, only a few studies are found on bracing strategies for performing interactive tasks and on analogies to human manipulation. In this paper, a method for predicting bracing properties is proposed for single degree of freedom interactive task to improve performance. To reflect real workplace scenarios, models of the human impedance, the brace, and the contact of the interaction are represented and used to predict the quality of the executed task. The task execution model intended to predict real-life performance in both free arm and braced conditions are then used to estimate the brace properties to augment performance of the representative task.
Twórcy
autor
  • Department of Mechanical Engineering, University of British Columbia, Vancouver BC, V6T 1Z4, Canada
Bibliografia
  • [1] Peral-Gutierrez F, Liao AL, Riviere CN. Static and dynamic accuracy of vitreoretinal surgeons. Proc 26th Ann Inter Conf IEEE EMBS. 2004. pp. 2734–7.
  • [2] Mictell B, Koo J, Iordachita I, Kazanzides P, Kapoor A, Handa J, et al. Development and application of a new steady-hand manipulator for retinal surgery. IEEE International Conference on Robotics and Automation; 2007. pp. 623–9.
  • [3] Sandoval R, MacLachlan RA, Oh MY, Riviere CN. Positioning accuracy of neurosurgeons. Proc 29th Ann Inter Conf IEEE EMBS. 2007. pp. 206–9.
  • [4] Kooyman J. Tool bracing for performance improvement in simulated femoral head-neck osteochondroplasty.[Master's Thesis] University of British Columbia; 2013.
  • [5] Asada H, West H. Design and analysis of braced manipulators for improved stiffness. Robotics Research: 3rd International Symposium. 1985. pp. 307–13.
  • [6] Book WJ, Le S, Sangveraphunsiri V. The bracing strategy for robot operation. Proc. 5th Symposium on Theory and Practice of Robots and Manipulators (Udine, Italy). 1984. pp. 139–45.
  • [7] Kwon DS, Book W. A framework for analysis of a bracing manipulator with staged positioning. 1988 ASME Winter Annual Meeting, Nov. 27–Dec. 2; 1988.
  • [8] Moore SR, Hogan N. Part reference manipulation – a strategy applied to robotic drilling. ASME Winter Annual Meeting; 1983. pp. 183–91.
  • [9] Asada H, Sawada Y. Design of an adaptable tool guide for grinding robots. Robot Comp Integr Manuf 1885;2(1): 49–54.
  • [10] Fields A, Youcef-Toumi K, Asada H. Flexible fixuring and automatic drilling of sheet metal parts using a robot manipulator. Robot Comp Integr Manuf 1989;5(4):371–80.
  • [11] Molander T. Routing and drilling with an industrial robot. 13th International Symposium on Industrial Robots, vol. 3; 1983. pp. 37–43.
  • [12] Zupancic J, Bajd T. Comparison of position repeatability of a human operator and an industrial manipulating robot. Comput Biol Med 1998;28:415–21.
  • [13] Vanderborght B, Albu-Schaeffer A, Bicchi A, Burdet E, et al. Variable impedance actuators: a review. Robot Auton Syst 2013;61:1601–14.
  • [14] Fasse ED, Hogan N, Gomez SR, Mehta NR. A novel variable mechanical impedance electromechanical actuator. Dynam Syst Control 1994;551:311–8.
  • [15] Stramigioli S, Fasse ED, Willems JC. A rigorous framework for interactive robot control. Int J Control 2002;75(18): 1486–503.
  • [16] Fehlberg MA, Gleeson BT, Provancher WR, Active Handrest:. A large workspace tool for precision manipulation. Int J Robot Res 2012;31(3):289–301.
  • [17] Lew JY, Book WJ. Bracing micro/macro manipulators control. IEEE International Conference on Robotics and Automation, vol. 3. 1994. pp. 2362–8.
  • [18] Taylor R, Barnes A, Kumar R, Gupta P, Wang Z, Jensen P, et al. A steady-hand robotic system for microsurgical augmentation. Int J Robot Res 1999;18:1201–10.
  • [19] Shoham M, Burman M, Zehavi E, Joskowicz L, Batkilin E, Kunicher Y. Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Robot Autom 2003;19:893–901.
  • [20] Hogan N. Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans Autom Control 1984;29(8):681–90.
  • [21] Franklin DW, Milner TE. Adaptive control of stiffness to stabilize hand position with large loads. Exp Brain Res 2003;152:211–20.
  • [22] Gomi H, Osu R. Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J Neurosci 1998;18:8965–78.
  • [23] Nichols TR, Houk JC. Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. J Neurophysiol 1976;39:119–42.
  • [24] Hogan N. The mechanics of multi-joint posture and movement control. Biol Cybern 1985;52:315–31.
  • [25] Takahashi CD, Scheidt RA, Reinkensmeyer DJ. Impedance control and internal model formation when reaching in a randomly varying dynamical environment. J Neurophysiol 2001;86:1047–51.
  • [26] Bizzi E, Hogan N, Mussa-Ivaldi FA, Giszter S. Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci 1992;15:603–13.
  • [27] Mohammad T, Liu PY, Hodgson A. Effects of bracing on pointing task accuracy. 37th Canadian Medical and Biological Engineering Conference; 2014.
  • [28] Gerovich O, Marayong P, Okamura AM. The effect of visual and haptic feedback on computer-assisted needle insertion. Comput Aided Surg 2004;9(6):243–9.
  • [29] Deary IJ, Liewald D, Nissan J. A free, easy-to-use, computer-based simple and four-choice reaction time programme: the Deary-Liewald reaction time task. Behav Res Methods 2011;43(1):258–68.
  • [30] McIvor JM. Effect of bracing and navigation display design on targeting accuracy and plunge depth during surgical drilling.[Master's Thesis] University of British Columbia; 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a362685-eb4f-4381-a9dc-ffb01bcb1dcd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.