PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of the turbulent thermo-fluid performance in a circular heat exchanger with a novel flow deflector-type baffle plate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An axial flow tubular heat exchanger has been experimentally investigated to augment the heat transfer rate with a novel swirl flow of air past the heated tubes. The novel design has been based on circular baffle plates provided with trapezoidal air deflectors of various inclination angles. The arrangement of tubes is kept the same throughout the experiment, in accordance with the longitudinal airflow direction. The tubes maintained a constant heat flux condition over the surface. Four deflectors with equal inclination angles were developed on each baffle plate, generating air swirl inside a circular duct carrying the heated tubes that increase air-side turbulence and, consequently, the surface heat transfer rate. The baffle plates were placed equidistant from each other at variable pitch ratios. The Reynolds number was kept in the range of 16000– 28000. The effect of pitch ratios and inclination angles on the thermo-fluid performance of the heat exchanger was studied. The investigations revealed an average improvement of 3.75 times in thermo-fluid performance for an exchanger with a deflector baffle plate with a baffle inclination angle of 50_ and a pitch ratio of 1.4 when compared to other inclination angles and pitch ratios.
Rocznik
Strony
art. no. e145939
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, India
  • Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, India
Bibliografia
  • [1] R. Webb, Principles of Enhanced Heat Transfer. John Wiley & Sons, New York, 1994.
  • [2] A.E. Bergles, “Heat transfer enhancement – the encouragement and accommodation of high heat fluxes,” J. Heat Transf.-Trans. ASME, vol. 119, no. 1, pp. 8–19, 1997, doi: 10.1115/1.2824105.
  • [3] M. Sheikholeslami, M. Gorji-Bandpy, and D.D. Ganji, “Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices,” Renew. Sustain. Energy Rev., vol. 49, pp. 444–469, 2015, doi: 10.1016/j.rser.2015.04.113.
  • [4] A. Sohal, K. Kumar, and R. Kumar, “Heat transfer enhancement with channel surface roughness: A comprehensive review,” Proc. Inst. Mech. Eng., Part C-J. Mech. Eng. Sci, vol. 236, no. 11, pp. 6308–6334, 2022, doi: 10.1177/095440622110656.
  • [5] K. Yakut and B. Sahin, “Flow-induced vibration analysis of conical rings used heat transfer enhancement in the heat exchanger,” Appl. Energy, vol. 78, no. 3, pp. 273–88, 2004, doi: 10.1016/j.apenergy.2003.09.001.
  • [6] V. Kongkaitpaiboon, K. Nanan, and S. Eiamsa-ard, “Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators,” Int. Commun. Heat Mass Transf., vol. 37, pp. 568–574, 2010, doi: 10.1016/j.icheatmasstransfer.2009.12.016.
  • [7] F. Kreith and D. Margolis, “Heat transfer and friction in turbulent vortex flow,” Appl. Sci. Res., vol. 8, pp. 457–473, 1959.
  • [8] M. Tusar, K. Ahmed, and M. Bhuiya, “CFD study of heat transfer enhancement and fluid flow characteristics of laminar flow through tube with helical screw tape insert,” Energy Procedia, vol. 160, pp. 699–706, 2019, doi: 10.1016/j.egypro.2019.02.190.
  • [9] Z.Y. Yang, “Enhanced condensation using twisted-tape inserts,” in 6th ASME–JSME, Thermal Engineering Joint Conference, USA, 2003.
  • [10] S. Eiamsa-ard and P. Promvonge, “Enhancement of heat transfer in a tube with regularly-spaced helical tape swirl generators,” Solar Energy, vol. 78, no. 4, pp. 483–494, 2005, doi: 10.1016/j.solener.2004.09.021.
  • [11] R. Sethumadhavan and M.R. Rao, “Turbulent flow heat transfer and fluid friction in helical-wire-coil-inserted tubes,” Int. J. Heat Mass Transf., vol. 26, no. 12, pp. 1833–1845, 1983, doi: 10.1016/S0017-9310(83)80154-9.
  • [12] S.R. Chaurasia and R.M. Sarviya, “Comparative thermal hydraulic performance analysis on helical screw insert in tube with different number of trips in transition flow regime,” Heat Mass Transf., vol. 57, pp. 77–91, 2021.
  • [13] V.K. Dhir, F. Chang, “Heat transfer enhancement using tangential injection,” ASHRAE Trans., 1992, vol. 98, p. BA-92-4-1.1992.
  • [14] A. Durmus, A. Durmus, and M. Esen, “Investigation of heat transfer and pressure drop in a concentric heat exchanger with snail entrance,” Appl. Therm. Eng., vol. 22, no. 3, pp. 321–32, 2002, doi: 10.1016/S1359-4311(01)00078-3.
  • [15] M. Yilmaz, O. Comakli, and S. Yapici, “Enhancement of heat transfer by turbulent decaying swirl flow,” Energy Conv. Manag., vol. 40, pp. 1365–76, 1999, doi: 10.1016/S0196-8904(99)00030-8.
  • [16] M. Sheikholeslami, M.G. Bandpy, and D.D. Ganji, “Effect of discontinuous helical turbulators on heat transfer characteristics of double pipe water to air heat exchanger,” Energy Conv. Manag., vol. 118, pp. 75–87, 2016, doi: 10.1016/j.enconman.2016.03.080.
  • [17] M. Sheikholeslami and D.D. Ganji, “Heat transfer enhancement in an air-to-water heat exchanger with discontinuous helical turbulators; experimental and numerical studies,” Energy, vol. 116, no. 1, pp. 341–352, 2016, doi: 10.1016/j.energy.2016.09.120.
  • [18] A.K. Gupta, D.G. Lilley, and N. Syred, Swirl Flows. Kent, England: Abaccus Press, 1984.
  • [19] P. Promvonge and S. Eiamsa-ard, “Heat transfer enhancement in a tube with combined conical-nozzle inserts and swirl generator,” Energy Conv. Manag., vol. 47, no. 18–19, pp. 2867–2882, 2006, doi: 10.1016/j.enconman.2006.03.034.
  • [20] T. Akiyama and M. Ikeda, “Fundamental study of the fluid mechanics of swirling pipe flow with air suction,” Ind. Eng. Chem. Process Des. Dev., vol. 25, no. 4, pp. 907–913, 1986, doi: 10. 1021/i200035a012.
  • [21] M.L. Mathur and N.R.L. Macallum, “Swirling air jets issuing from vane swirlers, part 1: Free jets,” J. Inst. Fuel, vol. 40, pp. 214–225, 1967.
  • [22] ASHRAE Handbook – Fundamentals, American Society of Heating, Refrigerating and Air-conditioning Engineers, SI-ed, Atlanta, ch. 13, 1993, pp. 14–15.
  • [23] H.W. Coleman and W.G. Steele, Experimentation, validation, and uncertainty analysis for engineers. John Wiley & Sons, 2018.
  • [24] J.D. Holmes, Wind Loading of Structures, 2nd ed., Taylor & Francis: New York, USA, 2007, pp. 168–169.
  • [25] Y.Z. Cao, Experimental Heat Transfer. 1st ed., National Defence Industry Press: Beijing, 1998, pp. 120–125.
  • [26] J. Ma, Y.P. Huang, J. Huang, Y.L. Wang, and Q.W. Wang, “Experimental investigations on single-phase heat transfer enhancement with longitudinal vortices in narrow rectangular channel,” Nucl. Eng. Des., vol. 240, no. 1, pp. 92–102, 2010, doi: 10.1016/j.nucengdes.2009.10.015.
  • [27] S. Eiamsa-ard, “Study on thermal and fluid flow characteristics in turbulent channel flows with multiple twisted tape vortex generators,” Int. Commun. Heat Mass Transf., vol. 37, no. 6, pp. 644–651, 2010, doi: 10.1016/j.icheatmasstransfer.2010.02.004.
  • [28] S.V. Garimella and P.A. Eibeck, “Enhancement of single-phase convective heat transfer from protruding elements using vortex generators,” Int. J. Heat Mass Transf., vol. 34, no. 9, pp. 2431–2433, 1991, doi: 10.1016/0017-9310(91)90068-P.
  • [29] M. Fiebig, “Review embedded vortices in internal flow: heat transfer and pressure loss enhancement,” Int. J. Heat Fluid Flow, vol. 16, no. 5, pp. 376–388, 1995, doi: 10.1016/0142-727X(95)00043-P.
  • [30] F.W. Dittus and L.M.K. Boelter, “Heat Transfer in Automobile Radiators of the Tubular Type,” University of California Press, Berkeley: University of California Publications in Engineering, vol. 2, pp. 443–461, 1930.
  • [31] F.M. White, Fluid mechanics. McGraw-Hill: Boston, 2003.
  • [32] J.L. Wang, Z.S. Zhang, and X. Zeng, “Effect of longitudinal vortices on the turbulent structure in near-wall region,” Acta Mech. Sin., vol. 26, no. 5, pp. 625–629, 1994.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a31f540-65d8-4827-95ed-0b6a1f5252d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.