PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanizm działania platynowców oraz węglików niektórych metali jako modyfikatorów chemicznych w atomowej spektrometrii absorpcyjnej

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Mechanism of action of platinum group metals and some metals’ carbides as chemical modifiers in the atomic absorption spectrometry
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono cechy i mechanizmy działania modyfikatorów matrycy zawierających metale z grupy platynowców (PGM) oraz węgliki metali trudnotopliwych, w analizach techniką ASA. Modyfikatory mogą być stosowane jako permanentne lub jednorazowe, w kolejnych rozdziałach przedstawiono różnice między nimi, a także obszary zastosowań poszczególnych typów.
EN
The paper presents the characteristics and mechanisms of action of matrix modifiers containing platinum group metals (PGM), and refractory metals carbides, in the analyses using ASA technique. Modifiers can be used as a permanent or one-time, The subsequent chapters present the differences between them, as well as different application areas of the individual types.
Wydawca
Rocznik
Tom
Strony
77--93
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
autor
  • Instytut Transportu Samochodowego
Bibliografia
  • [1] D.L. Tsalev, V.I. Slaveykova, P.B. Mandjukov, Chemical modification in graphite-furnace atomic absorption spectrometry, Spectrochim. Acta Rev. 13; (1990) 225-274.
  • [2] B. Welz, G. Schlemmer, J.R. Mudakavi, Palladium nitrate-magnesium nitrate modifier for electrothermal atomic absorption spectrometry. Part 5. Performance for the determination of 21 elements, J. Anal. At. Spectrom. 7 (1992) 1257-1271.
  • [3] L.M. Voth-Beach, D.E. Shrader, Investigations of a reduced palladium chemical modifier for graphite furnace atomic absorption spectrometry, J. Anal. At. Spectrom. 2 (1987) 45-50.
  • [4] D.L. Tsalev, A. D’Ulivo, L. Lampugnani, M. di Marko, R. Zamboni, Thermally stabilized iridium on an integrated, carbide-coated platform as a permanent modifier for hydrideforming elements in electrothermal atomic absorption spectrometry. Part 1. Optimization studies, J. Anal. At. Spectrom. 10 (1995) 1003-1009.
  • [5] X.-Q. Shan, Z.-M. Ni, Matrix modification for the determination of lead in urine by graphite furnace atomic absorption spectrometry, Can. J. Spectrosc. 27 (1982) 75-81.
  • [6] Y. Hirano, K. Yasuda, K. Hirokawa, Chemical species and phases of alloys in the ashing process in graphite furnace-atomic absorption spectrometry by means of secondary ion mass spectrometry, Bunseki Kagaku 44 (1995) 521-527.
  • [7] A. Volynsky, S. Tikhomirov, A. Elagin, Proposed mechanism for the action of palladium and nickel modifiers in electrothermal atomic absorption spectrometry, Analyst 116 (1991) 145-148.
  • [8] P.-Y. Yang, Z.-M. Ni, Z.-X. Zhuang, F.-C. Xu, A.-B. Jiang, Study of palladium-analyte binary system in the graphite furnace by surface analytical techniques, J. Anal. At. Spectrom. 7 (1992) 515-519.
  • [9] A.B. Volynsky, V. Krivan, S.V. Tikhomirov, A radiotracer study on effectiveness of platinum metals as chemical modifiers in electrothermal atomic absorption spectrometry: behaviour of selenium in a graphite furnace, Spectrochim. Acta Part B 51 (1996). 1253-1261.
  • [10] T.L. Ho, Hard and Soft Acids and Basis Principle in Organic Chemistry, Academic Press, New York, 1977.
  • [11] V.T. Yilmaz, H. Icbudak, Thermal decomposition characteristics of ammonium hexachlorometallate (IV) Complex salts of platinum metals, Thermochim. Acta 276 (1996). 115-122.
  • [12] Landolt-Boernstein, O. Madelung (Ed.), Group IV, Macroscopic and Technical Properties of Matter, New Series, Vol. 5, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Springer-Verlag, Berlin, 1991.
  • [13] J. Schneider, C. Wambach, B. Pennemann, K. Wandelt, Scanning tunneling microscopy and scanning tunnelling spectroscopy studies of powdery palladiumrgraphite model catalysts, Langmuir 15 (1999) 5765-5772.
  • [14] D.L. Styris, D.A. Redfield, Perspectives on mechanisms of electrothermal atomization, Spectrochim. Acta Rev. 15 (1993). 71-123.
  • [15] A.B. Volynsky / Spectrochim. Acta Part B 59 (2004) 1799-1821
  • [16] X.-Q. Shan, Z.-M. Ni, Matrix modification for the determination of mercury using an electrothermal graphite atomizer in atomic absorption spectrometry, Acta Chim. Sin. 37 (1979) 261-266.
  • [17] P. Bermejo-Barrera, J. Moreda-Pineiro, A. Moreda- Pineiro, A. Bermejo-Barrera, Study of chemical modifiers for direct determination of silver in sea water by ETA-AAS with deuterium background correction, Talanta 43 (1996) 35-44.
  • [18] L. Pszonicki, A.M. Essed, Behaviour of the system: lead-sodium-chloride ions-palladium during atomization in graphite furnace atomic absorption spectrometry, Chem. Anal. Warsaw. 38 (1993) 759-770.
  • [19] S. Saracoglu, L. Elci, Effectiveness of palladium-sodium azide modifier for the direct determination of urinary cadmium by graphite-furnace atomic absorption spectrometry, Anal. Sci. 15 (1999) 569-573.
  • [20] I. Rucandio, D. Petit, Determination of cadmium in coal fly ash, soil and sediment samples by GFAAS with evaluation of different matrix modifiers, Fresenius, J. Anal. Chem. 364 (1999) 541-548.
  • [21] N. Kamiya, K. Hoshino, K. Ota, Studies on thermal decomposition of iridium and ruthenium chlorides (in Japanese), Nippon Kagaku Kaishi (1988) 1938-1943.
  • [22] P. Bermejo-Barrera, J. Moreda-Pineiro, A. Moreda- Pineiro, A. Bermejo-Barrera, Usefulness of the chemical modification and the multi-injection technique approaches in the electrothermal atomic absorption spectrometric determination of silver, arsenic, cadmium, chromium, mercury, nickel and lead in sea-water, J. Anal. At. Spectrom. 13 (1998) 777-786.
  • [23] K. Morikawa, T. Shirasaki, M. Okada, Correlation among methods of preparation of solid catalysts, their structures, and catalytic activities, in: D.D. Eley (Ed.), Advances in Catalysis and Related Subjects, Vol. 20, Ch. 3, Academic Press, New York, (1969), pp. 98-133.
  • [24] D.-Q. Zhang, Z.-M. Ni, H.-W. Sun, Stabilization of organic and inorganic mercury in the graphite furnace with (NH4)2PdCl6] NH4-3RhCl6 as a mixed chemical modifier, Spectrochim. Acta Part B 53 (1998) 1049-1055.
  • [25] O. Acar, A.R. Turker, Z. Kilic, Determination of bismuth, indium and lead in geological samples by electrothermal AAS. Part 2. Comparative study of palladium and molybdenum containing chemical modifiers, Fresenius’ J. Anal. Chem. 360 (1998) 645-649.
  • [26] A. Furtado da Silva, B. Welz, A. J. Curtius, Noble metals as permanent chemical modifiers for the determination of mercury in environmental reference materials using solid sampling graphite furnace atomic absorption spectrometry and calibration against aqueous standards, Spectrochim. Acta Part B 57 (2002) 2031-2045.
  • [27] A. B. Volynsky, V. Krivan, Comparison of different forms of palladium used as chemical modifiers for the determination of selenium by electrothermal atomic absorption spectrometry, J. Anal. At. Spectrom. 11 (1996) 159-164.
  • [28] S. Sachsenberg, T. Klenke, W.E. Krumbein, H.J. Schellnhuber, E. Zeeck, Direct graphite furnace atomic absorption spectrometric determination of metals in sea water: application of palladium modifiers and a fractal approach to their analytical support, Anal. Chim. Acta 279 (1993) 241-251.
  • [29] J. Dědina, Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: On the way towards the ideal atomizer, Spectrochim. Acta Part B 62 (2007) 846-872.
  • [30] M.L. Hamilton, G.A.D. Ritchie, Y. Arita, P. Ewart, Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques, Appl Phys B (2010) 100: 665-673.
  • [31] H. Kasban, O.Zahran, H.Arafa, M.El-Kordy, S.M.S.Elaraby, F.E.AbdEl-Samie, Laboratory experiments and modelling for industrial radiotracer applications, Applied Radiation and Isotopes 68 (2010) 1049-1056.
  • [32] K. Yasuda, Y. Hirano, T. Kamino, T. Yaguchi, K., Hirokawa, Electron microscopic observation of the reduction process of indium oxide to indium metal and on the formation of a palladium - indium intermetallic compound in a thermal pretreatment process in graphitefurnace atomic absorption spectrometry, Anal. Sci. 12 (1996) 659-663.
  • [33] B. Hilligsoe, J.E.T. Andersen, E.H. Hansen, Investigations into the role of modifiers for entrapment of hydrides in flow injection hydride generation electrothermal atomic absorption spectrometry as exemplified by the determination of germanium, J. Anal. At. Spectrom. 12 (1997), 585-588.
  • [34] A.B. Volynsky, Catalytic processes in graphite furnaces for electrothermal atomic absorption spectrometry, Spectrochim. Acta Part B 51 (1996) 1573-1589.
  • [35] D.L. Styris, L.J. Prell, D.A. Redfield, Mechanisms of palladium-induced stabilization of arsenic in electrothermal atomization atomic absorption spectroscopy, Anal. Chem. 63 (1991) 503-507.
  • [36] K. Ouishi, K. Yasuda, Y. Morishige, K. Hirokawa, Role of metal matrix modifier in ashing and beginning of the atomization process in graphite furnace-atomic absorption spectrometry, Fresenius J. Anal. Chem. 348 (1994) 195-200.
  • [37] O. Landolt-Boernstein, Ed. Madelung, Group IV, Macroscopic and Technical Properties of Matter, New Series, Vol. 5, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Springer-Verlag, Berlin, (1991).
  • [38] X.-Q. Shan, Z.-M. Ni, Matrix modification for the determination of lead in urine by graphite furnace atomic absorption spectrometry, Can. J. Spectrosc. 27 (1982) 75-81.
  • [39] W. Frech, E. Lundberg, A. Cedergren, Investigations of some methods used to reduce interference effects in graphite furnace atomic absorption spectrometry, Prog. Anal. At. Spectrosc. 8 (1985) 257-370.
  • [40] Y.-Z. Liang, Z.-M. Ni, Atom release of Mn, Co, Ag and Tl in a graphite furnace atomizer with and without palladium modifier, Spectrochim. Acta Part B 4 (1994) 229-241.
  • [41] J.L. Fischer, C.J. Rademeyer, Kinetics of selenium atomization in electrothermal atomic absorption spectrometry ETAAS.. Part 2. Selenium with palladium modifiers, Spectrochim. Acta Part B 53 (1998) 549-567.
  • [42] E.C. Lima, F.J Krug, K.W. Jackson, Evaluation of tungsten-rhodium coating on an integrated platform as a permanent chemical modifier for cadmium, lead and selenium determination by electrothermal atomic absorption spectrometry, Spectrochim. Acta Part B 53 (1998) 1791-1804.
  • [43] M. Bertília O. Giacomelli, et al., Determination of As, Cd, Pb and Se in DORM-1 dogfish muscle reference material using alkaline solubilization and electrothermal atomic absorption spectrometry with Ir-Rh as permanent modifiers or Pd-Mg in solution, Spectrochimica Acta Part B 57 (2002) 2151-2157.
  • [44] A. R. Borges, E. M. Becker, M. B. Dessuy, M. Goreti, R. Vale, B. Welz, Investigation of chemical modifiers for the determination of lead in fertilizers and limestone using graphite furnace atomic absorption spectrometry with Zeeman-effect background correction and slurry sampling, Spectrochimica Acta Part B 92 (2014) 1-8.
  • [45] A. Mroczek, G. Werner, R. Wennrich, W. Schroen, Investigation of sulfur release in ETVICP-AES and its application for the determination of sulfates, Fresenius’ J. Anal. Chem. 361 (1998) 34-42.
  • [46] J.L. Fischer, C.J. Rademeyer, Kinetics of selenium atomization in electrothermal atomic absorption spectrometry ETAAS. Part 3. Chemical interference of sulphate using palladium modifiers, Spectrochim. Acta Part B 54 (1999) 975-983.
  • [47] M.Y. Shiue, Y.C. Chan, J. Mierzwa, M.H. Yang, Determination of tellurium in indium antimonide by slurry sampling electrothermal atomic absorption spectrometry, J. Anal. At. Spectrom. 14 (1999) 69-74.
  • [48] C.J. Rademeyer, B. Radziuk, N. Romanova, Y. Thomassen, P. Tittarelli, Reduction of background absorption in the measurement of cadmium, lead and selenium in whole blood using iridium-sputtered graphite tubes in electrothermal atomic absorption spectrometry, J. Anal. At. Spectrom. 12 (1997) 81-84.
  • [49] M. Li, Z.-M. Ni, Z. Rao, Determination of selenium in biological tissue samples rich in phosphorus using electrothermal atomization with Zeeman-effect background correction and (NH4)3RhCl6-citric acid as a mixed chemical modifier, Spectrochim. Acta Part B 53 (1998) 1381-1389.
  • [50] X. Hou, B.T. Jones, Tungsten devices in analytical atomic spectrometry, Spectrochimica Acta Part B 57 (2002) 659-688.
  • [51] W. Schedler, Hartmetall fur den Praktiker, VDI-Verlag GmbH, Dusseldorf, 1988.
  • [52] A.B. Volynsky, Graphite atomizers with high-melting carbides for electrothermal atomic absorption spectrometry. II. Practical aspects, Spectrochim. Acta Part B 53 (1998) 1607-1645.
  • [53] M. S. Luz, P. V. Oliveira, Niobium carbide as permanent modifier for silicon determination in petrochemical products by emulsion-based sampling GF AAS, Fuel 116 (2014) 255-260.
  • [54] E. Lassner, W.D. Schubert, Tungsten-Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, Kluwer Acad.Plenum Publ., New York, (1999), p. 121, 122 and 157-164.
  • [55] H.M. Ortner et al. / Spectrochimica Acta Part B 57 (2002) 1835-1853.
  • [56] G. Muller-Vogt, F. Weigend, W. Wendl, Role of oxygen in the determination of oxides forming elements by electrothermal atomic absorption spectrometry, Part 3, Spectrochim. Acta Part B 51 (1996) 1133-1137.
  • [57] A.B. Volynsky, R. Wennrich, Spectrochimica Acta Part B 57 (2002) 1301-1316.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a28f2e1-c861-4cd4-9fa6-e0c9360cb3fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.