PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Robust flat filtering control of a two degrees of freedom helicopter subject to tail rotor disturbances

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article deals with modelling and a flatness-based robust trajectory tracking scheme for a two degrees of freedom helicopter, which is subject to four types of tail rotor disturbances to validate the control scheme robustness. A mathematical model of the system, its differential flatness and a differential parametrization are obtained. The flat filtering control is designed for the system control with a partially known model, assuming the non-modelled dynamics and the external disturbances (specially the tail rotor ones) to be rejected by means of an extended state model (ultra-local model). Numerical and experimental assessments are carried out on a characterized prototype whose yaw angle (ψ), given by the z axis, is in free form, while the pitch angle (θ), which results from rotation about the y axis, is mechanically restricted. The proposed controller performance is tested through a set of experiments in trajectory tracking tasks with different disturbances in the tail rotor, showing robust behaviour for the different disturbances. Besides, a comparison study against a widely used controller of LQR type is carried out, in which the proposed controller achieves better results, as illustrated by a performance index.
Rocznik
Strony
521--535
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
  • Interdisciplinary Professional Unit of Engineering and Advanced Technologies (UPIITA), National Polytechnic Institute, Av. IPN 2580 Col. Barrio La Laguna Ticomán, CP 07340, Mexico City, Mexico
  • Interdisciplinary Professional Unit of Engineering, Campus Hidalgo (UPIIH), National Polytechnic Institute, Carretera Pachuca-Actopan Kilómetro 1+500, San Agustín Tlaxiaca, 42162, Hidalgo, Mexico
  • Interdisciplinary Professional Unit of Engineering and Advanced Technologies (UPIITA), National Polytechnic Institute, Av. IPN 2580 Col. Barrio La Laguna Ticomán, CP 07340, Mexico City, Mexico
  • Interdisciplinary Professional Unit of Engineering and Advanced Technologies (UPIITA), National Polytechnic Institute, Av. IPN 2580 Col. Barrio La Laguna Ticomán, CP 07340, Mexico City, Mexico
  • Interdisciplinary Professional Unit of Engineering and Advanced Technologies (UPIITA), National Polytechnic Institute, Av. IPN 2580 Col. Barrio La Laguna Ticomán, CP 07340, Mexico City, Mexico
Bibliografia
  • [1] Ahi, B. and Haeri, M. (2018). Linear active disturbance rejection control from the practical aspects, IEEE/ASME Transactions on Mechatronics 23(6): 2909-2919.
  • [2] Ahmed, Q., Bhatti, A., Iqbal, S. and Kazmi, I. (2010). 2-Sliding mode based robust control for 2-DOF helicopter, 11th International Workshop on Variable Structure Systems (VSS), Mexico City, Mexico, pp. 481-486.
  • [3] Bortoff, S.A. (1999). The University of Toronto RC helicopter: A test bed for nonlinear control, Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast, USA, Vol. 1, pp. 333-338.
  • [4] Budiyono, A. and Wibowo, S. (2007). Optimal tracking controller design for a small scale helicopter, Journal of Bionic Engineering 4(4): 271-280.
  • [5] Butt, S.S. and Aschemann, H. (2015). Multi-variable integral sliding mode control of a two degrees of freedom helicopter, IFAC-PapersOnLine 48(1): 802-807.
  • [6] Cerezo-Pacheco, A.D., Pérez-Velasco, C.A., Lozano-Hernandez, Y., Rodriguez-Cortes, H. and Sánchez-Meza, V.G. (2021). Integration of x-plane and Matlab for modeling and simulation of a tiltrotor UAV, 2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), Cuernavaca, Mexico, pp. 39-44.
  • [7] Fareh, R., Khadraoui, S., Abdallah, M.Y., Baziyad, M. and Bettayeb, M. (2021). Active disturbance rejection control for robotic systems: A review, Mechatronics 80: 102671.
  • [8] Ferdaus, M.M., Anavatti, S.G., Pratama, M. and Garratt, M.A. (2020). Towards the use of fuzzy logic systems in rotary wing unmanned aerial vehicle: A review, Artificial Intelligence Review 53(1): 257-290.
  • [9] Fletcher, T.M. and Brown, R.E. (2008). Main rotor-tail rotor interaction and its implications for helicopter directional control, Journal of the American Helicopter Society 53(2): 125-138.
  • [10] Fliess, M. and Join, C. (2013). Model-free control, International Journal of Control 86(12): 2228-2252.
  • [11] Fliess, M., Lévine, J., Martin, P. and Rouchon, P. (1995). Flatness and defect of non-linear systems: Introductory theory and examples, International Journal of Control 61(6): 1327-1361.
  • [12] Fliess, M., Marquez, R., Delaleau, E. and Sira-Ramirez, H. (2002). Correcteurs proportionnels-intégraux généralisés, ESAIM: Control, Optimisation and Calculus of Variations 7: 23-41.
  • [13] Garcia, R. and Valavanis, K.P. (2008). The implementation of an autonomous helicopter testbed, in P. Valavanis et al. (Eds), Unmanned Aircraft Systems, Springer, Dordrecht, pp. 423-454.
  • [14] Han, J. (2009). From PiD to active disturbance rejection control, IEEE Transactions on Industrial Electronics 56(3): 900-906.
  • [15] He, M., He, J. and Scherer, S. (2021). Model-based real-time robust controller for a small helicopter, Mechanical Systems and Signal Processing 146: 1-16, Article no. 107022.
  • [16] Kantue, P. and Pedro, J.O. (2022). Integrated fault-tolerant control of a quadcopter UAV with incipient actuator faults, International Journal of Applied Mathematics and Computer Science 32(4): 601-617, DOI: 10.34768/amcs-2022-0042.
  • [17] Kasac, J., Kotarski, D. and Piljek, P. (2019). Frequency-shifting-based algebraic approach to stable on-line parameter identification and state estimation of multirotor UAV, Asian Journal of Control 21(4): 1619-1629.
  • [18] Kumar, E.V., Raaja, G.S. and Jerome, J. (2016). Adaptive PSO for optimal LQR tracking control of 2 DOF laboratory helicopter, Applied Soft Computing 41: 77-90.
  • [19] Kutay, A.T., Calise, A.J., Idan, M. and Hovakimyan, N. (2005). Experimental results on adaptive output feedback control using a laboratory model helicopter, IEEE Transactions on Control Systems Technology 13(2): 196-202.
  • [20] Leishman, J.G. (2007). The Helicopter, College Park Press, College Park, MD.
  • [21] Liu, C. (2022). Stabilization control of quadrotor helicopter through matching solution by controlled Lagrangian method, Asian Journal of Control 24(4): 1885-1894.
  • [22] Lozano-Hernandez, Y. and Gutierrez-Frias, O. (2016). Design and control of a four-rotary-wing aircraft, IEEE Latin America Transactions 14(11): 4433-4438.
  • [23] Lynn, R.R., Robinson, F., Batra, N. and Duhon, J. (1970). Tail rotor design. Part I: Aerodynamics, Journal of the American Helicopter Society 15(4): 2-15.
  • [24] Madoński, R. and Herman, P. (2015). Survey on methods of increasing the efficiency of extended state disturbance observers, ISA Transactions 56: 18-27.
  • [25] Nilsen, S. (2017). Modelling and Control of Two Degrees of Freedom Helicopter Model, MS thesis, Høgskolen i Sørøst-Norge, Notodden.
  • [26] Nonami, K., Kendoul, F., Suzuki, S., Wang, W. and Nakazawa, D. (2010). Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles, Springer, Tokyo.
  • [27] Ordaz, P., Alazki, H., Sánchez, B. and Ordaz-Oliver, M. (2023). On the finite time stabilization via robust control for uncertain disturbed systems, International Journal of Applied Mathematics and Computer Science 33(1): 71-82, DOI: 10.34768/amcs-2023-0006.
  • [28] Pereira das Neves, G. and Augusto Angélico, B. (2022). Model-free control of mechatronic systems based on algebraic estimation, Asian Journal of Control 24(4): 1575-1584.
  • [29] Pizetta, I.H.B., Brandao, A.S. and Sarcinelli-Filho, M. (2016). A hardware-in-the-loop platform for rotary-wing unmanned aerial vehicles, Journal of Intelligent & Robotic Systems 84(1): 725-743.
  • [30] Raffo, G.V., Ortega, M.G. and Rubio, F.R. (2015). Robust nonlinear control for path tracking of a quad-rotor helicopter, Asian Journal of Control 17(1): 142-156.
  • [31] Ramírez-Neria, M., Gao, Z., Sira-Ramirez, H., Garrido-Moctezuma, R. and Luviano-Juarez, A. (2021). On the tracking of fast trajectories of a 3 DOF torsional plant: A flatness based ADRC approach, Asian Journal of Control 23(3): 1367-1379.
  • [32] Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R. and Luviano-Juarez, A. (2014). Linear active disturbance rejection control of underactuated systems: The case of the furuta pendulum, ISA Transactions 53(4): 920-928.
  • [33] Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R. and Luviano-Juárez, A. (2016). On the linear control of underactuated nonlinear systems via tangent flatness and active disturbance rejection control: The case of the ball and beam system, Journal of Dynamic Systems, Measurement, and Control 138(10): 104501.
  • [34] Rojas-Cubides, H., Cortés-Romero, J., Coral-Enriquez, H. and Rojas-Cubides, H. (2019). Sliding mode control assisted by GPI observers for tracking tasks of a nonlinear multivariable twin-rotor aerodynamical system, Control Engineering Practice 88: 1-15.
  • [35] Ross, J., Seto, M. and Johnston, C. (2022). Autonomous landing of rotary wing unmanned aerial vehicles on underway ships in a sea state, Journal of Intelligent & Robotic Systems 104(1): 1-9.
  • [36] Rysdyk, R.T. and Calise, A.J. (1999). Adaptive model inversion flight control for tilt-rotor aircraft, Journal of Guidance, Control, and Dynamics 22(3): 402-407.
  • [37] Sánchez-Meza, V. G., Lozano-Hernández, Y. and Gutiérrez-Frías, O.O. (2020). Modeling and control of a two DOF helicopter with tail rotor disturbances, International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), pp. 79-84.
  • [38] Schäferlein, U., Keßler, M. and Krämer, E. (2018). Aeroelastic simulation of the tail shake phenomenon, Journal of the American Helicopter Society 63(3): 1-17.
  • [39] Siciliano, B., Sciavicco, L., Villani, L. and Oriolo, G. (2010). Robotics: Modelling, Planning and Control, London.
  • [40] Sira-Ramírez, H. (2018). From flatness, GPI observers, GPI control and flat filters to observer-based ADRC, Control Theory and Technology 16(4): 249-260.
  • [41] Sira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M. and Zurita-Bustamante, E.W. (2017). Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach, Butterworth-Heinemann, Kidlington.
  • [42] Sira-Ramírez, H., Zurita-Bustamante, E.W. and Huang, C. (2019). Equivalence among flat filters, dirty derivative-based PID controllers, ADRC, and integral reconstructor-based sliding mode control, IEEE Transactions on Control Systems Technology 28(5): 1696-1710.
  • [43] Spong, M., Hutchinson, S. and Vidyasagar, M. (2006). Robot Modeling and Control, Wiley, Hoboken.
  • [44] Ta, D.A., Fantoni, I. and Lozano, R. (2012). Modeling and control of a tilt tri-rotor airplane, 2012 American Control Conference (ACC), Montreal, Canada, pp. 131-136.
  • [45] Tang, P., Wang, F. and Dai, Y. (2019). Controller design for different electric tail rotor operating modes in helicopters, International Journal of Pattern Recognition and Artificial Intelligence 33(08): 1959022.
  • [46] Tanner, O. and Geering, H.P. (2003). Two-degree-of-freedom robust controller for an autonomous helicopter, Proceedings of the American Control Conference, Denver, USA, Vol. 2, pp. 993-998.
  • [47] Tavoosi, J. (2021). Hybrid intelligent adaptive controller for tiltrotor UAV, International Journal of Intelligent Unmanned Systems 9(4): 256-273.
  • [48] Velagic, J. and Osmic, N. (2010). Design and implementation of fuzzy logic controllers for helicopter elevation and azimuth controls, Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, pp. 311-316.
  • [49] Vitzilaios, N.I. and Tsourveloudis, N.C. (2009). An experimental test bed for small unmanned helicopters, Journal of Intelligent and Robotic Systems 54(5): 769-794.
  • [50] Wang, B., Shen, Y. and Zhang, Y. (2020). Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties, Aerospace Science and Technology 99: 105745.
  • [51] Zeng, Y., Xu, J. and Zhang, R. (2019). Energy minimization for wireless communication with rotary-wing UAV, IEEE Transactions on Wireless Communications 18(4): 2329-2345.
  • [52] Zhan, C. and Huang, R. (2020). Energy efficient adaptive video streaming with rotary-wing UAV, IEEE Transactions on Vehicular Technology 69(7): 8040-8044.
  • [53] Zhu, B. and Huo, W. (2013). Robust nonlinear control for a model-scaled helicopter with parameter uncertainties, Nonlinear Dynamics 73(1): 1139-1154.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a15bb88-6f74-4a60-a9b8-322964826028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.