PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of sodium trithiocarbonate for remove of chelated copper ions from industrial wastewater originating from the electroless copper plating process

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie tritiowęglanu sodu do usuwania chelatowanych jonów miedzi ze ścieków przemysłowych pochodzących z procesu bezprądowego miedziowania
Języki publikacji
EN
Abstrakty
EN
The possibility of chelated copper ions removal from wastewater from the production of printed circuit boards using Na2CS3 as a precipitant agent has been presented. The use of Na2CS3 (pH 9–9.5, FeCl3 1 mL/L, E= +82 mV) enabled successful precipitation of the complexed Cu(II) ions from wastewater (Cu 0.85 mg/L) containing potassium and sodium tartrate (KNaC4H4O6) as a complexing agent. The use of higher doses of Na2CS3 reduced the copper content to 0.05 mg/L (pH 9–9.5, FeCl3 1 mL/L, E= -156 mV). Application of Response Surface Methodology (RSM) allowed for the analysis and evaluation of the impact of the various independent parameters (pH, Fe(III) coagulant dose and 44.26% Na2CS3 dose) on the concentration of Cu(II) in treated wastewater. The lowest values of copper concentration (0.05, 0.02 and 0.03 mg/L) in the treated wastewater was obtained in the three experiments when an alkaline medium (pH 9.5 and 10) and higher concentration of Na2CS3 (0.23 and 0.28 mL/L) were used. The use of Na2CS3 solution under optimal process conditions (pH 9–9.5, E< +5 mV, FeCl3 0.5–1 mL/L, Na2CS3 0.28 mL/L), allows for almost complete precipitation of complexed copper ions(II) (Cu≤0.05 mg/L), most probably in the form of a brown solid Na2CS3.
PL
Celem przedstawionych badań było zweryfikowanie możliwości strącania Cu(II) ze ścieków pochodzących z procesu bezprądowego miedziowania, zawierających KNaC4H4O6 jako związek kompleksujący Cu(II), przy zastosowaniu Na2CS3. Przedstawiono możliwość usuwania Cu(II) ze ścieków pochodzących z produkcji obwodów drukowanych przy zastosowaniu Na2CS3 jako odczynnika strącającego. Zastosowanie Na2CS3 przy pH 9–9,5 w obecności koagulantu żelazowego (Fe(III)), umożliwiło skuteczne strącenie skompleksowanych jonów Cu(II) ze ścieków zawierających winian sodu i potasu (KNaC4H4O6), jako związek kompleksujący. Zastosowanie metody powierzchni odpowiedzi (Response Surface Methodology, RSM) pozwoliło na analizę i ocenę wpływu poszczególnych parametrów niezależnych (pH, dawka koagulantu żelazowego, dawka 44,26% Na2CS3) na stężenie miedzi w ściekach oczyszczonych
Rocznik
Strony
32--42
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Chemiqua Company, Poland
autor
  • Główny Instytut Górnictwa, Poland
autor
  • Główny Instytut Górnictwa, Poland
Bibliografia
  • 1. Abu-El-Halawa, R. & Zabin, S.A. (2017). Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands, Journal of Taibah University for Science, 11, 1, pp. 57–65.
  • 2. Bobrowska-Krajewska, K, Dabek, M., Kmieć, B. & Krajewski, J. (1994). Possibility of removing trace amounts of metals from wastewater, Archives of Environmental Protection, 3–4, pp. 73–87.
  • 3. Esfandyari A., Härter, S. & Franke, J. (2015). A lean based overview on sustainability of printed circuit board production assembly, Procedia CIRP, 26, pp. 305–310.
  • 4. Chang, Y.K., Chang, J.E., Lin, T.T. & Hsu, Y.M. (2002). Integrated copper-containing wastewater treatment using xanthate process, Journal of Hazardous Materials, 94, pp. 89–99.
  • 5. Chang, Y.K., Leu, M.H., Chang, J.E., Lin, T.F., Chiang, L.C. Shih, P.H. & Chen, T.C. (2007). Combined two-stage xanthate processes for the treatment of copper-containing wastewater, Engineering in Life Sciences, 7, 1, pp. 75–80.
  • 6. Chen, Q.Y., Luo, Z., Hills, C., Xue, G. & Tyrer, M. (2009). Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide, Water Research, 43, pp. 2605–2614.
  • 7. Choi, J.Y., Kim, D.S. & Lim, J.Y. (2006). Fundamental features of copper ion precipitation using sulfide as a precipitant in a wastewater system, Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 41, 6, pp. 1155–1172.
  • 8. Chu, K.H. & Hashim, M.A. (2000). Adsorption of copper(II) and EDTA-chelated copper(II) onto granular activated carbons, Journal of Chemical Technology and Biotechnology, 75, 11, pp. 1054–1060.
  • 9. Cobley, A.J., Bahaa, A. & Hussain, A. (2014). Improved electroless copper coverage at low catalyst concentrations and reduced plating temperatures enabled by low frequency ultrasound, International Journal of Electrochemical Science, 9, pp. 7795–7804.
  • 10. Combs, C.F. & Holden, H.T. (1996). Printed Circuits Handbook. Fourth Edition, New York, McGraw-Hill, 1996.
  • 11. Dave, R.S., Dave, G.B. & Mishra, V.P. (2010). Removal of copper ions from electroplating wastewater by weakly basic chelating anion exchange resins: Dowex 50X4, Dowex 50X2 and Dowex M-4195, Der Pharma Chemica, 2, 2, pp. 327–335.
  • 12. Ezeonyejiaku, C.D., Obiakor, M.O., Ezenwelu, C.O. (2011). Toxicity of copper sulphate and behavioral locomotor response of tilapia (Oreochromis Niloticus) and catfish (Clarias Gariepinus) species, Online Journal of Animal and Feed Research, 1,4, pp. 130–134.
  • 13. Feng, J. & Yongyou, H. (2011). Removal of EDTA-chelated copper from aqueous solution by interior microelectrolysis, Separation and Purification Technology, 78, 1, pp. 33–41.
  • 14. Fu, F.L., Zeng, H.Y., Cai, Q.H., Qiu, R.L., Yu, Y. & Xiong, Y. (2007). Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant, Chemosphere, 69, pp. 1783–1789.
  • 15. Fu, F.L., Chen, R.M. & Xiong, Y. (2006). Application of a novel strategy – coordination polymerization precipitation to the treatment of Cu2+-containing wastewaters, Separation and Purification Technology, 52, pp. 388–393.
  • 16. Fu, H., Lv, Xiaoshu, Yang, Y. & Xu, Xinhua. (2012). Removal of micro complex copper in aqueous solution with dithiocarbamate compound, Desalination and Water Treatment, 39, 1–3, pp. 103–111.
  • 17. Goncharuk, V.V., Bagrii, V.A., Mel’nik, L.A., Chebotareva, R.D. & Bashtan, S.Yu. (2009). The use of redox potential in water treatment processes, Journal of Water Chemistry and Technology, 32, 1, pp. 1–9.
  • 18. Keller, R. & Goosey, M. (1999). The printed circuit board industry an environmental best practice guide, London, PCIF, 1999.
  • 19. LaDou, J. (2006). Printed circuit board industry, International Journal of Hygiene and Environmental Health, 209, 3, pp. 211–219.
  • 20. Matlock, M.M., Henke, K.R. & Atwood, D.A. (2002). Effectiveness of commercial reagents for heavy metal removal from water with new insights for future chelate designs, Journal of Hazardous Materials, 92, pp. 129–142.
  • 21. Michalski, J. (1992). Technology and assembly of printed circuit boards, Wydawnictwo Naukowo-Techniczne, Warszawa 1992. (in Polish)
  • 22. Mirbagheri, S.A. & Hosseini, S.N. (2005). Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse, Desalination, 171, pp. 85–93.
  • 23. Ochoa-Herrera, V., León, G., Banihani, Q., Field, J.A. & Sierra-Alvarez, R. (2011). Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems, Science of the Total Environment, 15, pp. 412–413.
  • 24. Özverdi, A. & Erdem, M. (2006). Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide, Journal of Hazardous Materials, 137, pp. 626–632.
  • 25. Paulino, A.T., Minasse, F.A.S., Guilherme, M.R., Reis, A.V., Muniz, E.C. & Nozaki, J. (2006). Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters, Journal of Colloid and Interface Science, 301, pp. 479–487.
  • 26. PN-EN ISO 10523:2012 Water Quality. Determination of pH.
  • 27. PN-EN ISO 11885:2007 Water Quality. Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES).
  • 28. DIN 38409-26:1989-05 German standard methods for the examination of water, waste water and sludge. Parameters characterizing effects and substances (group H). Determination of the bismutchelating index IBiK (H 26).
  • 29. PN-C-84042:1997 Technical sodium sulphide. Electroplating Guide (2002). Joint publication, Wydawnictwo Naukowo-Techniczne, Warszawa 2002. (in Polish)
  • 30. Turhanen, P.A., Vepsäläinen, J.J. & Peräniemi, S. (2015). Advanced material and approach for metal ions removal from aqueous solutions, Scientific Reports, 5, article number 8992, pp 1–8.
  • 31. USEPA (1981). Treatability Manual, Technologies for Control/Removal of Pollutants, Office of Research and Development USEPA, Washington, 3, pp. 1–677.
  • 32. Xu, Y. & Zhang, F. (2006). Experimental research on heavy metal wastewater treatment with dipropyl dithiophosphate, Journal of Hazardous Materials, 137, pp. 1636–1642.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a120261-c54f-4cb6-8238-d9762e4cc94a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.