PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Equivalent linearization technique in non-linear stochastic dynamics of a cable-mass system with time-varying length

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Solid Mechanics Conference (SolMech 2018) (41 ; 27–31.08. 2018 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
In this paper the transverse vibrations of a vertical cable carrying a concentrated mass at its lower end and moving slowly vertically within the host structure are considered. It is assumed that longitudinal inertia of the cable can be neglected, with the longitudinal motion of the concentrated mass coupled with the lateral motion of the cable. An expansion of the lateral displacement of a cable in terms of approximating functions is used. The excitation acting upon the cable-mass system is a base-motion excitation due to the sway motion of a host tall structure. Such a motion of a structure often results due to action of the wind, hence it may be adequately idealized as a narrow-band random process. The narrow-band process is represented as the output of a system of two linear filters to the input in a form of a Gaussian white noise process. The non-linear problem is dealt with by an equivalent linearization technique, where the original non-linear system is replaced with an equivalent linear one, whose coefficients are determined from the condition of minimization of a mean-square error between the non-linear and the linear systems. The mean value and variance of the transverse displacement of the cable as well as those of the longitudinal motion of the lumped mass are determined with the aid of an equivalent linear system and compared with the response of the original non-linear system subjected to the deterministic harmonic excitation.
Rocznik
Strony
393--416
Opis fizyczny
Bibliogr. 26 poz., rys. kolor.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Poland,
  • West Pomeranian University of Technology, Szczecin, Poland,
  • Institute of Mechanics and Ocean Engineering, Hamburg University of Technology, Germany
  • Faculty of Arts, Science and Technology, University of Northampton, The United Kingdom
Bibliografia
  • 1. J.P. Andrew, S. Kaczmarczyk, Systems Engineering of Elevators, Elevator World, Mobile, Alabama, 2011.
  • 2. M.P. Cartmell, D.J. McKenzie, A review of space tether research, Progress in Aerospace Sciences, 44, 1–21, 2008.
  • 3. R.M. Evan-Iwanowski, Resonance Oscillations in Mechanical Systems, Elsevier Scientific Publishing Company, Amsterdam, 1976.
  • 4. N.J. Cook, The Designer’s Guide to Wind Loading of Building Structures Part 1, Butterworths, London, 1985.
  • 5. T. Kijewski-Correa, D. Pirinia, Dynamic behavior of tall buildings under wind: insights from full-scale monitoring, The Structural Design of Tall Special Buildings, 16, 471–486, 2007.
  • 6. G.R. Strakosch, The Vertical Transportation Handbook, John Wiley, New York, 1998.
  • 7. J.W. Larsen, R. Iwankiewicz, S.R.K. Nielsen, Probabilistic stochastic stability analysis of wind turbine wings by Monte Carlo simulations, Probabilistic Engineering Mechanics, 22, 181–193, 2007.
  • 8. S. Kaczmarczyk, R. Iwankiewicz, Gaussian and non-Gaussian stochastic response of slender continua with time-varying length deployed in tall structures, International Journal of Mechanical Sciences, 134, 500–510, 2017.
  • 9. G.F. Giaccu, B. Barbiellini, L. Caracoglia, Stochastic unilateral free vibration of an in-plane cable network, Journal of Sound and Vibration, 340, 95–111, 2015.
  • 10. S. Kaczmarczyk, R. Iwankiewicz, Y. Terumichi, The dynamic behaviour of a nonstationary elevator compensating rope system under harmonic and stochastic excitations, Journal of Physics: Conference Series, 181, 012–047, 2009.
  • 11. Y. Terumichi, M. Ohtsuka, M. Yoshizawa, Y. Fukawa, Y. Tsujioka, Nonstationary vibrations of a string with time-varying length and a mass-spring system attached at the lower end, Nonlinear Dynamics, 12, 39–55, 1995.
  • 12. Y.A. Mitropolskii, Problems of the Asymptotic Theory of Nonstationary Vibrations, Israel Program for Scientific Translations Ltd, Jerusalem, 1965.
  • 13. S. Kaczmarczyk, R. Iwankiewicz, On the nonlinear deterministic and stochastic dynamics of a cable – mass system with time-varying length, 12th International Conference on Structural Safety and Reliability, Austria, 1205–1213, 2017.
  • 14. T.K. Caughey, Equivalent linearization techniques, The Journal of the Acoustical Society of America, 35, 1706–1711, 1963.
  • 15. J.B. Roberts, Response of non-linear mechanical systems to random excitations: Part II: Equivalent linearization and other methods, Shock and Vibration Digest, 13, 5, 15–29, 1981.
  • 16. P.D. Spanos, Stochastic linearization in structural dynamics, Appplied Mechanics Reviews, A.S.M.E., 34, 1–8, 1981.
  • 17. J.B. Roberts, P.D. Spanos, Random Vibration and Statistical Linearization, Wiley, Chichester, New York, 1990.
  • 18. L. Socha, Linearization Methods for Stochastic Dynamic systems, Lecture Notes in Physics 730, Springer, Heidelberg, 2008.
  • 19. A. Tylikowski, W. Marowski, Vibration of a non-linear single-degree-of-freedom system due to Poissonian impulse excitation, International Journal of Non-Linear Mechanics, 21, 229–238, 1986.
  • 20. M. Grigoriu, Response of dynamic systems to Poisson white noise, Journal of Sound and Vibration, 195, 3, 375–389, 1996.
  • 21. R. Iwankiewicz, S.R.K. Nielsen, Dynamic response of hysteretic systems to Poisson-distributed pulse trains, Probabilistic Engineering Mechanics, 7, 135–148, 1992.
  • 22. P.D. Spanos, G.I. Evangelatos, Response of nonlinear system with restoring forces governed by fractional derivatives – time domain simulation and statistical linearization solution, Soil Dynamics and Earthquake Engineering, 30, 811–821, 2010.
  • 23. P.D. Spanos, I.A. Kougioumtzoglou, Harmonic wavelets based statistical linearization for response evolutionary power spectrum determination, Probabilistic Engineering Mechanics, 27, 57–68, 2012.
  • 24. F. Kong, P.D. Spanos, J. Li, I.A. Kougioumtzoglou, Response evolutionary power spectrum determination of chain-like MDOF non-linear structural systems via harmonic wavelets, International Journal of Non-Linear Mechanics, 66, 3–17, 2014.
  • 25. I.A. Kougioumtzoglou, V.C. Fragkoulis, A.A. Pantelous, A. Pirrotta, Random vibration of linear and nonlinear structural systems with singular matrices: a frequency domain spproach, Journal of Sound and Vibration, 404, 84–101, 2017.
  • 26. T.S. Atalik, S. Utku, Stochastic linearization of multi-degree-of-freedom nonlinear systems, Earthquake Enginering Structures Dynamics, 4, 411–420, 1976.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a0a029c-d6d6-4457-9d20-5a4f9f2eacea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.