PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applicability of polyimide membranes for air separation in oxy-MILD power plants: semi-experimental research

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of experimental and computational research concerning the parameters of the separation process of N2/O2 mixture, regarding the composition of ambient air, using capillary polyimide membranes. The analysis focused on the potential applicability of polyimide membranes in oxy-MILD combustion units. The experimental data, collected using a sophisticated experimental test stand, was used to approximate continuous functions, describing the dependencies of essential parameters of the air separation process on variable operational conditions. These functions were used as fundamental blocks to develop a complete mathematical model of the membrane separation unit (MSU), including polyimide membranes and additional equipment, intended for use within oxy-MILD power generation units. Computational research was performed for three variants of MSU unit configuration, including: serial connection of membrane modules, multiple retentate recirculation and multiple permeate recirculation. Results, presented in the form of characteristic curves of investigated dependencies, indicate that the highest parameters of the separation process were gained for serial connection, whereas the lowest were for permeate recirculation. The collected data suggests that retentate recirculation might be beneficial for specific conditions, with limited application for continuous operation.
Rocznik
Strony
44--53
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Politechnika Śląska
  • Politechnika Śląska
  • Politechnika Śląska
  • Politechnika Śląska
Bibliografia
  • 1. Wiciak, G., and Kotowicz, J. (2011) Experimental stand for CO2 membrane separation. Journal of Power Technologies, 91, 171-178.
  • 2. Dryjańska, A., and Janusz-Szyma_nska, K. (2013) The analysis of economic efficiency of oxy-type power plant on supercritical parameters with a capacity of 600 MW. Archivum Combustionis, 33, 109-123.
  • 3. Davidson, J., and Thambimuthu, K. (2004) Technologies for capture of carbon dioxide. Proceedings of the Seventh Greenhouse Gas Technology Conference.
  • 4. Remiorz, L., Rulik, S., and Dykas, S. (2013) Numerical modelling of CO2 separation process. Archives of Thermodynamics, 34, 41-53.
  • 5. Remiorz, L., Dykas, S., and Rulik, S. (2010) Numerical Modelling of Thermoacoustic Phenomenon as Contribution to Thermoacoustic Engine Model. Task Quarterly, 14, 261-273.
  • 6. Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G., and Chmielewski, A.G. (2007) Application of polyimide membranes for biogas purification and enrichment. Journal of Hazardous Materials, 144, 698-702.
  • 7. Wiciak, G. (2012) Identyfikacja wybranych charakterystyk separacji CO2 membrany kapilarnej polimerowej. Rynek Energii, 100, 94-100.
  • 8. Fujimori, T., and Yamada, T. (2013) Realization of oxyfuel combustion for near zero emission power generation. Proceedings of the Combustion Institute, 34, 2111-2130.
  • 9. Yamauchi, Y., and Akiyama, K. (2013) Innovative Zero-emission Coal Gasification Power Generation Project. Energy Procedia, 37, 6579-6586.
  • 10. Verkhivker, G., and Yantovski, E. (2001) Zero-emissions gas-fired cogeneration of power and hydrogen. International Journal of Hydrogen Energy, 26, 1109-1113.
  • 11. Chmielniak, T., and Lukowicz, H. (2010) Condensing power plant cycle - assessing possibilities of improving its e_ciency. Archives of Thermodynamics, 31, 105-113.
  • 12. Meyer, J., Mastin, J., Bjørnebøle, T.-K., Ryberg, T., and Eldrup, N. (2010) Techno-economical study of the Zero Emission Gas power concept. Energy Procedia, 4, 1949-1956.
  • 13. Sahand, S., Mahmoudi, S.M.S., Nami, H., and Yari, M. (2016) Energy and exergy analyses of a novel near zero emission plant: Combination of MATIANT cycle with gasification unit. Applied Thermal Engineering, 108, 893-904.
  • 14. Li, L., Duan, L., Tong, S., and Anthony, E.J. (2019) Combustion characteristics of lignite char in a uidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres. Fuel Processing Technology, 186, 8-17.
  • 15. Nami, H., Ranjbar, F., and Yari, M. (2018) Thermodynamic assessment of zero-emission power, hydrogen and methanol production using captured CO2 from S-Graz oxy-fuel cycle and renewable hydrogen. Energy Conversion and Management, 161, 53-65.
  • 16. Chen, W., Ham, L. van der, Nijmeijer, A., and Winnubst, L. (2015) Membrane-integrated oxy-fuel combustion of coal: Process design and simulation. Journal of Membrane Science, 492, 461-470.
  • 17. Perrone, D., Castiglione, T., Klimanek, A., Morrone, P., and Amelio, M. (2018) Numerical simulations on Oxy-MILD combustion of pulverized coal in an industrial boiler. Fuel Processing Technology, 181, 361-374.
  • 18. Remiorz, L., Wiciak, G., Grzywnowicz, K., and Janusz-Szymańska, K. (2019) Investigation of Applicability of Polyimide Membranes for Air Separation in Oxy-MILD Zero-Emission Power Plants. Proceedings of the XIV Research and Development in Power Engineering Conference, 137, 01033.
  • 19. Ben-Mansour, R., and Qasem, N.A.A. (2018) An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74. Energy Conversion and Management, 156, 10-24.
  • 20. Yang, M.-W., Chen, N.-chi, Huang, C.-hsiang, Shen, Y.-ting, Yang, H.-sung, and Chou, C.-tung (2014) Temperature swing adsorption process for CO2 capture using polyaniline solid sorbent. Energy Procedia, 63, 2351-2358.
  • 21. Zheng, L., Prossner, N.M., and Shah, M.M. (2011) Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture, Woodhead Publishing.
  • 22. Bell, D.A., Towler, B.F., and Fan, M. (2010) Coal Gasification and Its Applications, Elsevier.
  • 23. Lee, S., Yun, S., and Kim, J.-K. (2019) Development of novel sub-ambient membrane systems for energy-efficient post-combustion CO2 capture. Applied Energy, 238, 1060-1073.
  • 24. Rezakazemi, M., Sadrzadeh, M., and Matsuura, T. (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Progress in Energy and Combustion Science, 66, 1-41.
  • 25. Scholes, C.A., Stevens, G.W., and Kentish, S.E. (2012) Membrane gas separation applications in natural gas processing. Fuel, 96, 15-28.
  • 26. Banaszkiewicz, T., Chorowski, M., and Gizicki, W. (2014) Comparative analysis of oxygen production for oxy-combustion application. Energy Procedia, 51, 127-134.
  • 27. Toftegaard, M.B., Brix, J., Jensen, P.A., Glarborg, P., and Jensen, A.D. (2010) Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36, 581-625.
  • 28. Zhang, D., Wang, H., Li, C., and Meng, H. (2017) Modelling of purge-gas recovery using membrane separation. Chemical Engineering Research and Design, 125, 361-366.
  • 29. Chen, W., Chen, C.-sheng, Bouwmeester, H.J.M., Nijmeijer, A., and Winnubst, L. (2014) Oxygen-selective membranes integrated with oxy-fuel combustion. Journal of Membrane Science, 463, 166-172.
  • 30. Bounaceur, R., Berger, E., Pfister, M., Andres, A., Santos, R., and Favre, E. (2017) Rigorous variable permeability modelling and process simulation for the design of polymeric membrane gas separation units: MEMSIC simulation tool. Journal of Membrane Science, 523, 77-91.
  • 31. Unger, N., Bond, T.C., Wang, J.S., Koch, D.M., Menon, S., Shindell, D.T., and Bauer, S. (2010) Attribution of climate forcing to economic sectors. Proceedings of National Academy of Sciences of USA, 107, 3382-3387.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a06e494-5ec4-492c-9495-70fec49a627b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.