PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetism in disordered materials

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper is a review of some problems concerning micromagnetism and magnetism in disordered system.Magnetism of disordered systems is an important problem in analysis of many magnetic materials. As we understand, the term disorder is associated with the both structural (topological and/or chemical) and magnetic (interactions, anisotropy) failures. Typical materials, where phenomena are influenced by the disorder are amorphous and nanocrystalline alloys, nanostructures of magnetic objects, nanoconposites, diluted magnetic materials and intermetallic compounds of rare earth and transition metals. Moreover, in polycrystalline samples can be observed some anomalies related to the area between the grains, which inherently carries some attributes of the disorder. Thus, knowledge of the subject presented here is essential for the proper analysis of magnetics with elements of disorder. In the paper the following problems are discussed: i)magnetization processes in nanosized objects including the famous Stoner-Wohlfarth model, ii) superparamagnetism and magnetic viscosity (time dependent effects), iii) random field Ising model, random bond model and random anisotropy model. Applications of the theories for selected materials (magnetically soft and hard, thin layers, diluted magnetics, and powder systems) are also shown. Design/methodology/approach: Magnetism in disordered materials is a complex problem that, until now, has not exact solutions. There the two approaches. One of them requires some approximation of the problem in order to obtain exact analytical results. The second approach consists in numerical analysis of exact problem that leads to approximated solutions. In the both cases it is important in which stage of a model the disorder is introduced. In the paper the two approaches are widely discussed. Findings: The main conclusion of the paper is that some unusual magnetic properties can be attributed to magnetic and structural disorder. Practical implications: Application of the presented in the paper models indicate that in many magnetic materials the contribution of magnetic disorder plays an important role and should be taken onto account in order to perform correct analysis. Originality/value: The presented collection of different theoretical models including some elements of micromagnetism and magnetism in disordered system as well as applications of the theories to modern magnetric materials is an original idea. The paper is addressed to scientists and researchers that deal with magnetism and related subjects.
Rocznik
Strony
80--109
Opis fizyczny
Bibliogr. 100 poz.
Twórcy
autor
  • Augut Chełkowski Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
Bibliografia
  • [1] M.E. McHenry, M.A. Willard, D.E. Laughin, Amorphous and nanocrystalline materials for applications as soft magnets, Progress in Materials Science 44 (1999) 291.
  • [2] K.H.J. Buschow , F.R. de Boer, Physics of magnetism and magnetic materials, Kluwer Academic Publishers, 2004.
  • [3] R. Zallen, Physics of amorphous solids, PWN, Warsaw, 1994 (in Polish).
  • [4] I.M.L. Billas, J.A. Becker, A. Chatelain et al., Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature, Physical Review Letters 71 (1993) 1067-1070.
  • [5] A. Hirt, D.Gerion, I.M.L. Billas et al., Thermal properties of ferromagnetic clusters, Zeitschrift für Physik D 40 (1997) 160-163.
  • [6] M. Getzlaff, Fundamentals of magnetism, Springer-Verlag Berlin Heidelberg, 2008.
  • [7] F.J.A den Braoden, W. Howing, P.J.H. Bloemen, Magnetic anisotropy of multilayers, Journal of Magnetism and Magnetic Materials 93 (2002) 562-570.
  • [8] A.P. Guimarães, Principles of nanomagnetism, Springer-Verlag Berlin Heidelberg, 2009.
  • [9] A. K´akay, M.W. Gutowski, L. Takacs, V. Franco and L.K. Varga, Langevin granulometry of the particle size distribution, Journal of Physics A, Mathematical and General 37 (2004) 6027-6041.
  • [10] A. Chrobak, G. Haneczok, G. Chełkowska, A. Kassiba, G. Ziółkowski, Numerical analysis of superparamagnetic clusters, Physica Status Solidi 208/11 (2011) 2692-2698.
  • [11] E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys, Philosophical Transactions of the Royal Society A 240 (1948) 599-642, Reprinted in IEEE Transactions on Magnetism 27 (1991) 3475-3518.
  • [12] C. Tannous, J. Gierałtowski, The Stoner-Wohlfarth model of ferromagnetism, European Journal of Physics 29 (2008) 475-487.
  • [13] R Street, J.C. Woolley, A study of magnetic viscosity, proceedings of the physical society A 62 (1949) 562-572.
  • [14] N.T. Gorham, R.C. Woodward, T.G.St. Pierre, B.D. Terris, S. Sun, Apparent magnetic energybarrier distribution in FePt nanoparticles, Journal of Magnetism and Magnetic Materials 295 (2005) 174-176.
  • [15] T.G. St. Pierre, N.T. Gorham, P.D. Allen, Apparent magnetic energy-barrier distribution in horse-spleen ferritin, Evidence for multiple interacting magnetic entities per ferrihydrite nanoparticle, Physical Review B 65 (2002) 1-7.
  • [16] G. Haneczok, Migrational relaxation in solids, University of Silesia Publishing House, Katowice, 2011 (in Polish).
  • [17] Y. Imry, S.K. Ma, Random-field instability of the ordered state of continuous symmetry, Physical Review Letters 35 (1975) 1399-1401.
  • [18] T. Nattermann, P. Rujan, Random field and other systems dominated by disorder fluctuations, International Journal of Modern Physics B 3 (1989) 1597.
  • [19] D.S. Fisher, G.M. Grinstein, A.Khurana, Theory of random magnets, Physics Today 41 (1988) 56-67.
  • [20] S.F. Edwardst, P.W. Anderson, Theory of spin glasses, Journal of Physics F, Metal Physics 5 (1975) 965-974.
  • [21] S.F. Edwardst, P.W. Anderson, Theory of spin glasses II, Journal of Physics F, Metal Physics 6 (1976) 1927-1937.
  • [22] J.A. Mydosh, Disordered magnetism and spin glasses, Journal of Magnetism and Magnetic Materials 157/158 (1996) 606-610.
  • [23] A.F.J. Margownik, J.A. Mydosh, High-temperature susceptibility of the CuMn spin-glass, Physical Review B 24/9 (1981) 5277-5283.
  • [24] A.F.J. Margownik, J.A. Mydosh, Analysis of the hightemperature spin-glass susceptibility: Determination of the local magnetic exchange, Solid State Communication 47/5 (1983) 321-324.
  • [25] G.E. Brodale, R.A. Fisher, W.E. Fogle, N.E. Philips, J. Curen, The effect of spin-glass ordering on the specific heat of CuMn, Journal of Magnetism and Magnetic Materials 31 (1983) 1331-1333.
  • [26] V. Cannella, J.A. Mydosh, Magnetic ordering in gold-iron alloys, Physical Review B 6/11 (1972) 4220-4237.
  • [27] D. Hüsler, L.E. Wanger, A.J. van Duyneveldt, J.A. Mydosh, Dynamical behavior of the susceptibility around the freezing temperature in (Eu,Sr)S, Physical Review B 27/5 (1983) 3100-3103.
  • [28] C. Dekker, A.F. Arts, H. Wijn, Static critical behavior of the two-dimensional Ising spin glass Rb2Cu1-xCoxF4, Physical Review B 38 (1988) 8985-8991.
  • [29] K. Gunnarsson, P. Svendlindh, P. Norblad, L. Lungren, H. Aruga, A. Ito, Static scaling in a short-range Ising spin glass, Physical Review B 43 (1991) 8199-8203.
  • [30] J.A. Mydosh, Spin glasses: an experimental introduction, Taylor & Francis, Washington DC, 1993.
  • [31] K.H. Ficher, Spin glasses I, Physica Status Solidi B 116/2 (1983) 357-683.
  • [32] K.H. Ficher, Spin glasses II, Physica Status Solidi B 130/1 (1985) 13-71.
  • [33] T. Schneider, E. Pyttee, Random-field instability in ferromagnetic state, Physical Review 15 (1977) 1519-1522.
  • [34] S. Kirkpatrick, D. Shcrrington, Infinite-ranged models of sinn-glasses, Physical Review B 17 (1978) 4384-4403.
  • [35] J.R.L de Almeida, D.J Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model, Journal of Physics A 11/5 (1978) 983-990.
  • [36] A. Blandin, M. Gabay, T. Garel, On the mean-field theory of spin glasses, Journal of Physics C 13/3 (1980) 403-418.
  • [37] A.J. Bray, M.A. Moore, Metastable states in the solvable spin glass model, Journal of Physics A 14 (1981) L377- L383.
  • [38] D.J. Thouless, J.R.L de Almeida, J.M. Kosterlitz, Stability and Susceptibility in Parisi's solution of a spin glass model, Journal of Physics C 13/17 (1980) 3271-3280.
  • [39] G. Parisi, The magnetic properties of the Sherrington- Kirkpatrick model for spin glasses, Theory versus Monte Carlo simulations, Philosophical Magazine B 41/6 (1980) 677-680.
  • [40] D.J Thouless, P. Anderson, R.G. Palmer, Solution of 'Solvable model of a spin glass', Philosophical Magazine 35 (1977) 593-601.
  • [41] R. Alben, J.J. Becker, M.C. Chi, Random anisotropy in amorphous ferromagnets, Journal of applied Physics 49 (1978) 1653-1659.
  • [42] J.D. Patterson, G.R. Gruzalski, D.J. Sellmyer, Effect of random anisotropy on magnetic properties of amorphous systems, Physical Review B 18 (1978) 1377-1390.
  • [43] C. Jayaprakash, S. Kirkpatrick, Random anisotropy models in the Ising limit, Physical Review B 21 (1980) 4072-4083.
  • [44] A. Brooks Harris, R.G. Caflisch, J.R. Banavar, Randomanisotropy- axis magnet with infinite anisotropy, Physical Review B 35 (1987) 4929-4934.
  • [45] B Derridaj, J. Vannimenus, The random anisotropy axis model in the infinite-range limit, Journal of Physics C, Solid State Physics 13/17 (1980) 3261-3269.
  • [46] W.M. Saslow, N.C. Koon, Random-anisotropy model: Monotonic dependence of the coercive field on D/J, Physical Review B 49 (1994) 3386-3390.
  • [47] G. Herzer, The random anisotropy model, NATO Science Series II, Mathematics, Physics and Chemistry 184, Kluwer Academic, Dordrecht, 2005.
  • [48] G. Herzer, Anisotropies in soft magnetic nanocrystalline alloys, Journal of Magnetism and Magnetic Materials 294 (2005) 99-106.
  • [49] G. Herzer, Nano krystalline soft magnetic materials, Physica Scripta T 49 (1993) 307-314.
  • [50] T. Bitoh, A. Makino, A. Inoue, T. Masumoto, Random anisotropy model for nanocrystalline soft magnetic alloys with grain-size distribution, Materials Transactions 44/10 (2003) 2011-2019.
  • [51] B. Janus, M.S. Bucko, A. Chrobak, J. Wasilewski, M. Zych, Magnetic characterization of human blood in the atherosclerotic process in coronary arterie, Journal of Magnetism and Magnetic Materials 323 (2011) 479-48.
  • [52] A. Chrobak, B. Kotur, T. Mika, G. Haneczok, Effect of Gd and Fe doping on magnetic properties of Al87Y5Ni8 amorphous alloy, Journal of Magnetism and Magnetic Materials 321 (2009) 2767-2771.
  • [53]A. Chrobak, A. Slebarski, G. Haneczok, B. Kotur, Spin-glass-like behavior and related properties of aluminum-based Al-Y-RE-Ni (RE=Gd, Dy) amorphous alloys, Journal of applied Physics 110 (2011) 113908.
  • [54]Proceedings of the 15th International Conference on “Soft Magnetic Materials” SMM15, Bilbao, 2003, Journal of Magnetism and Magnetic Materials 254-255 (2003) v-vii.
  • [55]Proceedings of the 14th International Conference on “Soft Magnetic Materials” SMM14, Budapest, 2000, Journal of Magnetism and Magnetic Materials 216-216 (2000) v-vii.
  • [56]Proceedings of the 14th International Conference on “Soft Magnetic Materials” SMM13, Grenoble, 1998, Journal of Physics IV/8 (1998).
  • [57]Current Trends in Nanoscience - From Materials to Application Proceedings of Symposium A, E-MRS Spring Meeting, Strasbourg, 2003, Materials Science and Engineering C 23, 2003.
  • [58]J. Rasek, Diffusion phenomena in amorphous and crystalline materials, University of Silesia Publishing House, Katowice, 2000 (in Polish).
  • [59]T. Kulik, Nanocrystalline soft magnetic materials obtained by the crystallisation of metallic glasses, Scientific Papers of the Warsaw University of Technology, Warsaw, 1998 (in Polish).
  • [60]L.K. Varga, F. Mazaleyrat, Gy. Kovács, A. Kákay, The role of the residual amorphous matrix in determining the temperature dependence of soft magnetic properties of nc alloys, Journal of Magnetism and Magnetic Materials 226-230 (2001) 1550-1552.
  • [61]L.K. Varga, Zs. Gercsi, Gy. Kovács, A. Kákay, F. Mazaleyrat, Stress-induced magnetic anisotropy in nanocrystalline alloys, Journal of Magnetism and Magnetic Materials 254-255 (2003) 477-479.
  • [62]W. Qin, Y.F. Zhang, Y.W. Du, F. Xu, Y.J. Wu, M. Zhao, F. Ma, Permeability-frequency spectra of Nanoperm alloys under different heat treatment conditions, Journal of Magnetism and Magnetic Materials 270/1-2 (2004) 174-181.
  • [63]W. Qin, K. Pen, W.L. Gao, F. Xu, G. Ni, Y.W. Du, Effect of cooling rate on dynamic magnetization of Fe86Zr7B6Cu nanocrystalline alloy, Materials Research Bulletin 37/8 (2002) 1393-1399.
  • [64]M.N. Gona, S. Yanase, S. Hashi, Y.J. Okazaki, Magnetoimpedance effect in nanocrystalline FeZrNbB ribbons, Journal of Magnetism and Magnetic Materials 254-255 (2003) 466-468.
  • [65]M. Miglierini, M. Seberíni, I. Tóth, K. Vitázek, Journal of Magnetism and Magnetic Materials 265/3 (2003) 243-247.
  • [66]G. Haneczok, P. Kwapuliński, Z. Stokłosa, J. Rasek, R. Wroczyński, Magnetic properties of nanoperm type alloys and their application on electromagnetic shields, Archives of Materials Science 24/4 (2003) 373-391.
  • [67]T. Gloriant, S. Suriñach, M.D. Baró, Stability and crystallization of Fe-Co-Nb-B amorphous alloys, Journal of Noncrystalline Solids 333/3 (2004) 320-326.
  • [68]J.E. May, M.F. de Oliveira, S.E. Kuri, The effect of Nb substitution for Zr in soft magnetic FeCoZrCuB alloy, Journal of Alloys and Compounds 369/1-2 (2004) 121-124.
  • [69]J.E. May, M.F. de Oliveira, S.E. Kuri, New highly magnetic and oxidation-resistant FeCo-based alloys, Materials Science and Engineering A 361/1-2 (2003) 179-184.
  • [70]J.S. Blázquez, V. Franco, C.F. Conde, A. Conde, Microstructure and magnetic properties of Fe78-xCoxNb6B15Cu1 (x=18, 39, 60) alloys, Journal of Magnetism and Magnetic Materials 254-255 (2003) 460-462.
  • [71]H. Matyja, T. Kulik, Trends in non crystalline solids, World Scientufic Publishing Co, Singapore,1992, 107.
  • [72]Y. Hirotsu, D.E. Laughlin, G. Bertero, G. Herzer, K. Hono, Preface, Preface, Scripta Materialia 48/7 (2003) 831.
  • [73]H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Materialia 48/1 (2000) 1-29.
  • [74]G. Haneczok, J. Rasek, Free Volume diffusion and optimisation of soft magnetic properties in amorphous alloys based on iron, Defect and Diffusion Forum 224-225 (2004) 13-26.
  • [75]T. Kulik, Nanocrystallization of metallic glasses, Journal of Noncrystalline Solids 287 (2001) 145-161.
  • [76]M.E. McHenry, D.E. Laughlin, Nano-scale materials development for future magnetic applications, Acta Materialia 48 (2000) 223-238.
  • [77]A. Chrobak, PhD dissertation, Optimization of soft magnetic properties in nanoperm type alloys, Silesian University, 2004 (in Polish).
  • [78]T. Naohara, Ageing-induced soft magnetic properties of an amorphous Fe-Si-B-Nb alloy, Philosophical Magazine Letters 78 (1998) 229-234.
  • [79]A. Chrobak, D. Chrobak, G. Haneczok, P. Kwapulinski, Z. Kwolek, M. Karolus, Influence of Nb on the first stage of crystallization in the Fe86-xNbxB14 amorphous alloys, Materials Science and Engineering A 382 (2004) 401-406.
  • [80]G. Haneczok, A. Chrobak, P. Kwapuliński, Z. Stokłosa, J. Rasek, N. Wójcik, Optimisation of soft magnetic properties in the Fe86-xNbxB14 amorphous alloys, Proceedings of the International Conference on “Soft Magnetic Materials” SMM16, Düsseldorf, 2003, 603-608.
  • [81]G. Haneczok, J.E. Frąckowiak, A. Chrobak, P. Kwapuliński, J. Rasek, Magnetic permeability enhancement effect in the Fe86-xNbxB14 (x=5, 6) amorphous alloys, Physica Status Solidi A 202 (2005) 2574-2581.
  • [82]A. Chrobak, M. Kubisztal, G. Haneczok, D. Chrobak, P. Kwapuliński, Z. Stokłosa, J. Rasek, Phase stability and structural relaxation in Fe-Nb-B amorphous alloys, Archives of Metallurgy and Materials 51 (2006) 561-564.
  • [83]A. Chrobak, G. Haneczok, D. Chrobak, Ł. Madej, G. Chełkowska, M. Kulpa, Studies of the relaxed amorphous phase in the Fe80Nb6B14 alloy, Journal of Magnetism and Magnetic Materials 320 (2008) 770-773.
  • [84]Ł. Madej, G. Haneczok, A. Chrobak, P. Kwapuliński, Z. Stokłosa, J. Rasek, Long term stability of soft magnetic properties of amorphous and nanocrystalline alloys based on iron, Journal of Magnetism and Magnetic Materials 320 (2008) 774-777.
  • [85]A. Chrobak, G. Chełkowska, G. Haneczok, P. Kubik, Ł. Madej, Application of the coupling model to magnetic after effects in the Fe72Co10Nb6B12 amorphous alloy, Acta Physica Polonica A 115 (2009) 396-398.
  • [86]A. Chrobak, G. Haneczok, G. Chełkowska, Ł. Madej , Effect of structural disorder on magnetic frustrations in the Fe80Nb6B14 amorphous alloy, Journal of Magnetism and Magnetic Materials 322 (2010) 1105-1108.
  • [87] G. Haneczok, Ł. Madej, A. Chrobak, P. Kwapuliński, Z. Stokłosa, J. Rasek, Influence of structural relaxation on magnetostriction in amorphous alloys based on iron, Physica Scripta 81 (2010) 025702.
  • [88] G. Haneczok, J. Rasek, Free volume diffusion and optimization of soft magnetic propertiesin amorphous alloys based on iron, Defect and Diffusion Forum 224-225 (2004) 13-26.
  • [89] A. Chrobak, V. Nosenko, G. Haneczok, L. Boichyshyn, B. Kotur, A. Bajorek, O. Zivotsky, A. Hendrych, Effect of rare earth additions on magnetic properties of Fe82Nb2B14RE2 (RE = Y, Gd, Tb and Dy) amorphous alloys, Materials Chemistry and Physics 130 (2011) 603- 608.
  • [90] Ł. Madej, G. Haneczok, A. Chrobak, P. Kwapuliński, Z. Stokłosa, J. Rasek, Long term stability of soft magnetic properties of amorphous and nanocrystalline alloys based on iron, Journal of Magnetism and Magnetic Materials 320 (2008) 774-777.
  • [91] H. Kronmüller, Micromagnetism of hard magnetic nanocrystalline materials, Nanostructured Materials 6 (1995) 157-168.
  • [92] N. Randrianantoandro, A.D. Crisan, O. Crisan, J. Marcin, J. Kovac, J. Hanko, J.M. Grenèche, P. Svec, A. Chrobak, I. Skorvanek, The influence of microstructure on magnetic properties of nanocrystalline Fe-Pt-Nb-B permanent magnet ribbons, Journal of Applied Physics 108 (2010) 093910.
  • [93] M. Sagawa, S. Fujimura, H.i Yamamoto, Y. Matsuura, Permanent magnet materials based on the rare earth-ironboron tetragonal compounds, IEEE Transactions on Magnetism 20/5 (1984) 1584-1589.
  • [94] A. Chrobak, M. Karolus, G. Haneczok, Preparation of Febased bulk amorphous and nanocrystalline alloys by mould suction casting technique, Solid State Phenomena 163 (2010) 233-238
  • [95] A. Chrobak, G. Haneczok, G. Chełkowska, A. Bajorek, J. Kansy, A. Hanc, Magnetic properties of Fe-Nb-B-Re (Re=Y, Gd) bulk nanocrystalline alloys, Solid State Phenomena 170 (2011) 114-117.
  • [96] G. Ziółkowski, N. Randrianantoandro, A. Chrobak, J. Klimontko, M. Kądziołka-Gaweł, G. Haneczok, Influence of transition and rare earth elements on magnetic properties of Fe-Nb-B-M (M=Ni, Ag, Gd, Tb) bulk nanocrystalline alloys, Acta Physica Polonica A 121/5-6 (2012) 1266-1269.
  • [97] A. Chrobak G. Zióókowski, N. Randrianantoandro, J. Klimontko, G. Haneczok, Journal of Alloys and Compounds, 2012, http://dx.doi.org/10.1016/j.jallcom.2012.05) (in press).
  • [98] S. Thamm, J. Hesse, A simple plot indicating interactions between single-domain particles, Journal of Magnetism and Magnetic Materials 154 (1996) 254-262.
  • [99] S. Thamm, J. Hesse, The remanence of a Stoner-Wohlfarth particle ensemble as a function of the demagnetization process, Journal of Magnetism and Magnetic Materials 184 (1998) 245-255.
  • [100]G. Ziółkowski, A. Chrobak, N. Randrianantoandro, G. Chełkowska, Numerical analysis of time dependent effects in bulk nanocrystalline hard magnets, Solid State Phenomena, 2012 (in press).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a06568b-ef1a-4da0-9ebb-64ec1dcb2472
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.