PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An investigation of a detection method for a subsurface crack in the outer race of a cylindrical roller bearing

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania metody wykrywania pęknięć podpowierzchniowych w zewnętrznej bieżni łożyska walcowego
Języki publikacji
EN
Abstrakty
EN
As one of major failure modes of roller bearings due to periodic contact forces and external impulse loads, subsurface cracks caused by fatigues may produce catastrophic failures of rotating machines. Investigations of subsurface crack detection methods for roller bearings are very useful for maintenance purposes of these machines. In this study, a new detection method based on the curvature and power spectral density (PSD) of displacements is presented to detect a subsurface crack in the outer race of a cylindrical roller bearing. A dynamic finite element model of the cylindrical roller bearing with a subsurface crack in its outer race is developed using an explicit dynamics finite element software package to obtain the time-domain displacements. Differences of the curvature and PSD of displacements of the bearing without and with the subsurface crack are investigated, which are used to detect the location of the subsurface crack with different sizes in the outer race of the bearing. The results show that differences of the curvature and PSD of displacements from the measurement points on the outer race of the cylindrical roller bearing without and with the subsurface crack can be used to detect the location of the crack.
PL
Zmęczeniowe pęknięcia podpowierzchniowe, stanowiące jedną z głównych przyczyn uszkodzeń łożysk tocznych powodowanych okresowym działaniem sił kontaktowych i zewnętrznych obciążeń impulsowych, mogą prowadzić do katastrofalnych awarii maszyn wirnikowych. Badania metod wykrywania podpowierzchniowych pęknięć łożysk tocznych mają niezwykle istotne znaczenie dla obsługi serwisowej tych urządzeń. W prezentowanym badaniu, zaproponowano nową metodę detekcji podpowierzchniowych pęknięć w zewnętrznej bieżni łożyska walcowego. Metoda ta opiera się na pomiarze krzywizny oraz gęstości widmowej mocy (PSD) przemieszczeń. Opracowano dynamiczny model łożyska walcowego, w którego zewnętrznej bieżni powstało pęknięcie podpowierzchniowe . Model stworzono przy użyciu pakietu oprogramowania do analizy zjawisk szybkozmiennych metodą elementów skończonych w celu określenia przemieszczeń w dziedzinie czasu. Badano różnice krzywizny i PSD przemieszczeń dla łożyska, w którym powstało pęknięcie podpowierzchniowe w bieżni zewnętrznej łożyska oraz łożyska bez takiego pęknięcia. Różnice te wykorzystano do lokalizacji pęknięć podpowierzchniowych różnych rozmiarów. Wyniki pokazują, że różnice krzywizny i PSD przemieszczeń względem punktów pomiarowych na bieżni zewnętrznej między łożyskami walcowymi, z których jedno charakteryzujące się pęknięciem w warstwie podpowierzchniowej, a drugie nie, mogą być wykorzystywane do wykrywania położenia pęknięcia.
Rocznik
Strony
211--219
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, P.R. China
  • College of Mechanical Engineering, Chongqing University, Chongqing, 400030, P.R. China
autor
  • State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, P.R. China
  • m15051980972@163.com
autor
  • State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, P.R. China
Bibliografia
  • 1. Antoni J., Randall R. B. - A stochastic model for simulation and diagnostics of rolling element bearings with localized faults. Journal of vibration and acoustics 2003; 125(3): 282-289, https://doi.org/10.1115/1.1569940.
  • 2. Bogdański S., Trajer M. - A dimensionless multi-size finite element model of a rolling contact fatigue crack. Wear 2005; 258(7): 1265-1272, https://doi.org/10.1016/j.wear.2004.03.036.
  • 3. Bomidi J. A. R., Sadeghi F. - Three-dimensional finite element elastic-plastic model for subsurface initiated spalling in rolling contacts. Journal of Tribology 2014; 136(1): 011402, https://doi.org/10.1115/1.4025841.
  • 4. Brown R. G., Hwang P. Y. C. - Introduction to random signals and applied Kalman filtering. New York: John Wiley and Sons, 1997.
  • 5. Canadinc D., Sehitoglu H., Verzal K. - Analysis of surface crack growth under rolling contact fatigue. International Journal of Fatigue 2008; 30(9): 1678-1689, https://doi.org/10.1016/j.ijfatigue.2007.11.002.
  • 6. Cao H., Niu L., He Z. - Method for vibration response simulation and sensor placement optimization of a machine tool spindle system with a bearing defect. Sensors 2012; 12(7): 8732 8754, https://doi.org/10.3390/s120708732.
  • 7. Choudhury A., Tandon N. - Application of acoustic emission technique for the detection of defects in rolling element bearings. Tribology international 2000; 33(1): 39-45, https://doi.org/10.1016/S0301-679X(00)00012-8.
  • 8. Cusido J., Romeral L., Ortega J. A., Rosero J A. - Fault detection in induction machines Rusing power spectral density in wavelet decomposition. Industrial Electronics, IEEE Transactions on 2008; 55(2): 633-643, https://doi.org/10.1109/TIE.2007.911960.
  • 9. Deng S., Han X. H., Qin X. P., Huang S. - Subsurface crack propagation under rolling contact fatigue in bearing ring. Science China Technological Sciences 2013; 56(10): 2422-2432, https://doi.org/10.1007/s11431-013-5291-5.
  • 10. Deshpande L., Sawalhi N., Randall R. B. - Gearbox bearing fault simulation using a finie element model reduction technique. Journal of Physics: Conference Series. IOP Publishing 2012; 364(1): 012082.
  • 11. Eftekharnejad B., Carrasco M. R., Charnley B., Mba D. - The application of spectral kurtosis on acoustic emission and vibrations from a defective bearing. Mechanical Systems and Signal Processing 2011; 25(1): 266-284, https://doi.org/10.1016/j.ymssp.2010.06.010.
  • 12. Elforjani M., Mba D. - Assessment of natural crack initiation and its propagation in slow speed bearings. Nondestructive testing and evaluation 2009; 24(3): 261-275, https://doi.org/10.1080/10589750802339687.
  • 13. El-Thalji I., Jantunen E. - A summary of fault modelling and predictive health monitoring of rolling element bearings. Mechanical Systems and Signal Processing 2015; 60: 252-272, https://doi.org/10.1016/j.ymssp.2015.02.008.
  • 14. Hallquist J. O. - LS-DYNA theory manual. Livermore Software Technology Corporation, 2006.
  • 15. Kadin Y., Rychahivskyy A. V. - Modeling of surface cracks in rolling contact. Materials Science and Engineering: A 2012; 541: 143-151, https://doi.org/10.1016/j.msea.2012.02.016.
  • 16. Kocich R., Cagala M., Crha J., Kozelsky P. - Character of acoustic emission signal generated during plastic deformation. Proc. 30th European Conf. on 'Acoustic emission testing' and 7th Int. Conf. on 'Acoustic emission', Granada, Spain. 2012.
  • 17. Kumar A. M., Hahn G. T., Rubin C. A. - A study of subsurface crack initiation produced by rolling contact fatigue. Metallurgical Transactions A 1993; 24(2): 351-359, https://doi.org/10.1007/BF02657322.
  • 18. Leturiondo U., Salgado .O, Galar D. - Multi-body modelling of rolling element bearings and performance evaluation with localised damage. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18(4): 638-648, https://doi.org/10.17531/ein.2016.4.20.
  • 19. Liu C. R., Choi Y. - A new methodology for predicting crack initiation life for rolling contact fatigue based on dislocation and crack propagation. International Journal of Mechanical Sciences 2008; 50(2): 117-123, https://doi.org/10.1016/j.ijmecsci.2007.07.011.
  • 20. Liu Y., Liu L., Mahadevan S. - Analysis of subsurface crack propagation under rolling contact loading in railroad wheels using FEM. Engineering fracture mechanics 2007; 74(17): 2659-2674, https://doi.org/10.1016/j.engfracmech.2007.02.012.
  • 21. Liu J., Shao Y. M., Zhu W. D. - A new model for the relationship between vibration characteristics caused by the time-varying contact stiffness of a deep groove ball bearing and defect sizes. Journal of Tribology 2015; 137(3): 031101, https://doi.org/10.1115/1.4029461.
  • 22. Liu J., Shao Y. M. - A new dynamic model for vibration analysis of a ball bearing due to a localized surface defect considering edge topographies. Nonlinear Dynamics 2015; 79(2): 1329-1351, https://doi.org/10.1007/s11071-014-1745-y.
  • 23. Liu J., Shao Y. M. - A numerical investigation of effects of defect edge discontinuities on contact forces and vibrations for a defective roller bearing. Journal of Multi-body Dynamics 2016; 230(4): 387-400, https://doi.org/10.1177/1464419315615451.
  • 24. Lu X. B., Liu J. K., Lu Z. R. - A two-step approach for crack identification in beam. Journal of Sound and Vibration 2013; 332(2): 282-293, https://doi.org/10.1016/j.jsv.2012.08.025.
  • 25. Mano H., Yoshioka T., Korenaga A., Yamamoto T. - Relationship between growth of rolling contact fatigue cracks and load distribution. Tribology transactions 2000; 43(3): 367-376, https://doi.org/10.1080/10402000008982352.
  • 26. Moghaddam S. M., Sadeghi F., Paulson K., Weinzapfel N., Correns M., Bakolas V., Dinkel M. - Effect of non-metallic inclusions on butterfly wing initiation, crack formation, and spall geometry in bearing steels. International Journal of Fatigue 2015; 80: 203-215, https:// doi.org/10.1016/j.ijfatigue.2015.05.010.
  • 27. Price E. D., Lees A. W., Friswell M. I., Roylance B. J. - Online detection of subsurface distress by acoustic emissions. Key Engineering Materials 2003; 245: 451-460, https://doi.org/10.4028/www.scientific.net/KEM.245-246.451.
  • 28. Ratcliffe C. P. - A frequency and curvature based experimental method for locating damage in structures. Journal of vibration and acoustics 2000; 122(3): 324-329, https://doi.org/10.1115/1.1303121.
  • 29. Sadeghi F., Jalalahmadi B., Slack T. S., Raje N., Arakere N. K. - A review of rolling contact fatigue. Journal of Tribology 2009; 131(4): 041403, https://doi.org/10.1115/1.3209132.
  • 30. Sawalhi N., Randall R. B. - Vibration response of spalled rolling element bearings: Observations, simulations and signal processing techniques to track the spall size. Mechanical Systems and Signal Processing 2011; 25(3): 846-870, https://doi.org/10.1016/j.ymssp.2010.09.009.
  • 31. Schwach D. W., Guo Y. B. - A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. International journal of fatigue 2006; 28(12): 1838-1844, https://doi.org/10.1016/j.ijfatigue.2005.12.002.
  • 32. Yoshioka T., Fujiwara T. - Measurement of propagation initiation and propagation time of rolling contact fatigue cracks by observation of acoustic emission and vibration. Tribology Series 1987; 12: 29-33, https://doi.org/10.1016/S0167-8922(08)71045-9
  • 33. Yoshioka T. - Detection of rolling contact sub-surface fatigue cracks using acoustic emission technique. Lubrication Engineering 1993; 49(4): 303-308.
  • 34. Zhang Z. Q., Li G. L., Wang H. D., Xu B. S., Piao Z. Y., Zhu L. N. - Investigation of rolling contact fatigue damage process of the coating by acoustics emission and vibration signals. Tribology International 2012; 47: 25-31, https://doi.org/10.1016/j.triboint.2011.10.002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a046617-4e8b-44ce-a096-d22825f47e04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.