PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Graphene Polymer Composites: Art of Review on Fabrication Method, Properties, and Future Perspectives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Graphene has shown unique properties and introduced new challenges to light materials applicable in different areas. In addition to the polymer, it has brought materials with marvelous properties: mechanical, electrical, thermal, and related to conductivity. Different methods were discovered to produce good nanocomposites. This review summarized those methods, as well as discussed the properties of graphene combined with different kinds of polymers. Furthermore, the different factors affecting graphene reinforced polymer nanocomposites were studied. In the end, the challenges and future prospects for graphene polymer nanocomposites were considered.
Twórcy
  • School of Mechanical Engineering, Lanzhou Jiaotong University, 730070 Lanzhou, China
autor
  • School of Mechanical Engineering, Lanzhou Jiaotong University, 730070 Lanzhou, China
Bibliografia
  • 1. Tiwari, S.K., Sahoo, S., Nannan Wang, & Huczko, A. Graphene research and their outputs: Status and Prospect. Journal of Science: Advanced Materials and Devices. 2020.
  • 2. Loh, K.P., Bao, Q., Ang, P.K., & Yang, J. The chemistry of graphene. Journal of Materials Chemistry, 2010, 20(12), 2277.
  • 3. Yang, G., Li, L., Lee, W.B., & Ng, M.C. Structure of graphene and its disorders: a review. Science and Technology of Advanced Materials, 2018, 19(1), 613–648.
  • 4. Tjong, S. C. Polymer Composites with Graphene Nanofillers: Electrical Properties and Applications. Journal of Nanoscience and Nanotechnology, 2014, 14(2), 1154–1168.
  • 5. Kim, H., Abdala, A.A., & Macosko, C.W. Graphene/Polymer Nanocomposites Macromolecules, 2010, 43(16), 6515–6530.
  • 6. Kumar, A., Sharma, K., & Dixit, A. R., A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. Journal of Materials Science, 2018.
  • 7. Sanes, Sánchez, Pamies, Avilés, & Bermúdez. Extrusion of Polymer Nanocomposites with Graphene and Graphene Derivative Nanofillers: An Overview of Recent Developments. Materials, 2020, 13(3), 549.
  • 8. Lago, E.; Toth, P.S.; Pugliese, G.; Pellegrini, V.; Bonaccorso, F. Solution blending preparation of polycarbonate/graphene composite: Boosting the mechanical and electrical properties. RSC Adv. 2016, 6, 97931–97940.
  • 9. Galpaya, D., Wang, M., Liu, M., Motta, N., Waclawik, E., & Yan, C. Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites. Graphene, 2012. 01(02), 30–49.
  • 10. Noh, Y., Joh, H., Yu, J. et al. Ultra-high dispersion of graphene in polymer composite via solvent-free fabrication and functionalization. Sci Rep 2015. 5, 9141.
  • 11. He, F.; Lam, K.-H.; Fan, J.; Chan, L.H. Improved dielectric properties for chemically functionalized exfoliated graphite nanoplates/syndiotactic polystyrene composites prepared by a solution-blending method. Carbon 2014, 80, 496–503.
  • 12. Liang, A., Jiang, X., Hong, X., Jiang, Y., Shao, Z., & Zhu, D. Recent Developments Concerning the Dispersion Methods and Mechanisms of Graphene. Coatings, 2018, 8(1), 33.
  • 13. Alver, E.; Metin, A.Ü.; Çiftçi, H. Synthesis and characterization of chitosan/ polyvinylpyrrolidone/ zeolite composite by solution blending method. J. Inorg. Organomet. Polym. Mater. 2014, 24, 1048–1054.
  • 14. Yun, Y.S., Bae, Y.H., Kim, D.H., Lee, J.Y., Chin, I.J., Jin, H.J., Reinforcing effects of adding alkylated graphene oxide to polypropylene. Carbon, 2011, 49, 3553-3559.
  • 15. Yousefi, N., Gudarzi, M.M., Zheng, Q., Lin, X., Shen, X., Jia, J., Sharif, F., Kim, J.-K., Highly aligned, ultra-large-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability. Composites Part A: Applied Science and Manufacturing. 2013a, 49, 42-50.
  • 16. Shang, J., Zhang, Y., Yu, L., Luan, X., Shen, B., Zhang, Z., Lv, F., Chu, P.K., Fabrication and enhanced dielectric properties of graphene–polyvinylidene fluoride functional hybrid films with a polyaniline interlayer. Journal of Materials Chemistry, 2013. A1, 884.
  • 17. Liu, K., Chen, L., Chen, Y., Wu, J., Zhang, W., Chen, F., Fu, Q., Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous term reduction of graphene oxide. Journal of Materials Chemistry, 2011. 21, 8612-8617.
  • 18. Wang, J.-Y., Yang, S.-Y., Huang, Y.-L., Tien, H.-W., Chin, W.-K., Ma, C.-C.M., Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. Journal of Materials Chemistry, 2011b, 21, 13569.
  • 19. Li, Y., Pan, D., Chen, S., Wang, Q., Pan, G., Wang, T., In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Materials & Design 47, 850-856.
  • 20. Zhao, X., Li, Y., Wang, J., Ouyang, Z., Li, J., Wei, G., Su, Z., 2014. The interactive oxidationreduction reaction for the in situ synthesis of graphene-phenol formaldehyde composites with enhanced properties. ACS Appl Mater Interfaces 6, 4254-4263.
  • 21. Guo, F., Aryana, S., Han, Y., & Jiao, Y. A Review of the Synthesis and Applications of Polymer–Nanoclay Composites. Applied Sciences, 2018. 8(9), 1696.
  • 22. Yousefi N., Gudarzi M.M., Zheng Q., et al. Selfalignment and high electrical conductivity of ultra-large graphene oxide–polyurethane nanocomposites J. Journal of Materials Chemistry, 2012, 22(25): 12709-12717.
  • 23. Liu Z, Robinson J.T., Sun X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs J. Journal of the American Chemical Society, 2008, 130(33): 10876-10877
  • 24. Ghosh S., Bao W., Nika D.L., et al. Dimensional crossover of thermal transport in few-layer graphene J. Nature materials, 2010, 9(7): 555-558.
  • 25. Geim, A.K., & Novoselov, K.S. The rise of graphene. Nature Materials, 2007, 6(3), 183–191.
  • 26. Neto, A.C., Guinea, F., & Peres, N.M. Drawing conclusions from graphene. Physics World, 2006, 19(11), 33–37.
  • 27. Papageorgiou, D.G., Li, Z., Liu, M., Kinloch, I.A., & Young, R.J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale. 2020.
  • 28. Shi, J., Yang, J., Zhou, J., Ji, H., Tang, X., & Gao, T. Effect of graphene on thermal stability and mechanical properties of ethylene-vinyl acetate: A molecular dynamics simulation. Materials Research Express. 2020.
  • 29. Dickinson, L.R., Kranbuehl, D.E., & Schniepp, H.C. Assessing graphene oxide/polymer interfacial interactions by way of peeling test. Surface Innovations, 2016, 4(3), 158–166.
  • 30. Feng, J., Venna, S.R., & Hopkinson, D. P. Interactions at the interface of polymer matrix-filler particle composites. Polymer, 2016, 103, 189–195.
  • 31. Chee, W.K., Lim, H.N., Huang, N.M., & Harrison, I. Nanocomposites of graphene/polymers: a review. RSC Advances, 2015, 5(83), 68014–68051.
  • 32. Du, J., & Cheng, H.-M. The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromolecular Chemistry and Physics, 2012, 213(10-11), 1060–1077.
  • 33. Verma, D., Gope, P.C., Shandilya, A., & Gupta, A. Mechanical-Thermal-Electrical and Morphological Properties of Graphene Reinforced Polymer Composites: A Review. Transactions of the Indian Institute of Metals, 2014, 67(6), 803–816.
  • 34. Johnson, D.W., Dobson, B.P., & Coleman, K.S. A manufacturing perspective on graphene dispersions. Current Opinion in Colloid & Interface Science, 2015, 20(5-6), 367–382.
  • 35. Inam, F. Epoxy the hub for the most versatile polymer with an exceptional combination of superlative features. Epoxy, 2014, 1(1).
  • 36. Wei, J., Vo, T., & Inam, F. Epoxy/graphene nanocomposites – processing and properties: a review. RSC Advances, 2015, 5(90), 73510–73524.
  • 37. Shen, M.-Y., Chang, T.-Y., Hsieh, T.-H., Li, Y.-L., Chiang, C.-L., Yang, H., & Yip, M.-C. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites. Journal of Nanomaterials, 2013, 1–9.
  • 38. Wei, J., Atif, R., Vo, T., & Inam, F. Graphene Nanoplatelets in Epoxy System: Dispersion, Reaggregation, and Mechanical Properties of Nanocomposites. Journal of Nanomaterials, 2015, 1–12.
  • 39. Berhanuddin, N.I.C., Zaman, I., Rozlan, S.A.M., Karim, M.A.A., Manshoor, B., Khalid, A., Meng, Q. Enhancement of mechanical properties of epoxy/graphene nanocomposite. Journal of Physics: Conference Series, 2017, 914, 012036.
  • 40. Luo, F.; Wu, K.; Guo, H.; Zhao, Q.; Lu, M. Simultaneous Reduction and Surface Functionalization of Graphene Oxide for Enhancing Flame Retardancy and Thermal Conductivity of Mesogenic Epoxy Composites. Polym. Int. 2017, 66, 98–107.
  • 41. Yu, B.; Shi, Y.; Yuan, B.; Qiu, S.; Xing, W.; Hu, W.; Song, L.; Lo, S.; Hu, Y. Enhanced Thermal and Flame Retardant Properties of Flame-RetardantWrapped Graphene/Epoxy Resin Nanocomposites. J. Mater. Chem. A. 2015, 3, 8034–8044.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8a038c43-92cd-4543-90fb-8cb59d570f47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.