PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of Chlorella vulgaris after the Extraction Process in Wastewater Treatment as a Biosorption Material for Ciprofloxacin Removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Potentially negative environmental and human health effects have led to pharmaceutical chemicals,which are labeled as a new class of environmental contaminants. Adsorption is one of the most appealing choices to remove that pharmaceutical waste in recent years. However, the environmental limitations of the adsorbent material are an obstacle to the development of this process. The current study suggested the remaining Chlorella vulgaris biomass, after the extraction process of the biomaterials, to be a bio-absorption material in removing the Ciprofloxacin from the hospital wastewater. The preparation and characterization of the suggested adsorbent through FTIR analysis, and scanning electron microscopy, coupled with energy-dispersive X-ray spectroscopy and X-ray diffraction, were present in the current study. Several functional groups (such as carboxylic, amines, hydroxyls, and amides) were observed to aid the adsorption process. After the extraction process, the results showed a growth in the peaks, indicating an increase in functional groups, particularly the -O.H. and -N.H. groups, while having changed toward lower energy after binding with CIP atoms, as well as an increase in surface area from 2.3723 to 3.6224 m2/g. The XRD was shown to be compatible with the EDX test, which both demonstrated a decrease in carbon element concentration due to the deconstruction process. The effects of Ciprofloxacin bio-sorption variables, including contact time, initial Ciprofloxacin concentration, pH, and adsorbent dosage, were adopted as a parametric study. The maximum adsorption capacity was recorded at pH 7 with an adsorbent dose of 2.75 g/L; after 120 minutes, the data show that 89.9% of Ciprofloxacin has been adsorption onto the extracted biomass.
Rocznik
Strony
1--15
Opis fizyczny
Bibliogr. 78 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, College of Engineering University of Baghdad,Iraq
  • Department of Chemical Engineering, College of Engineering University of Baghdad,Iraq
Bibliografia
  • 1. Abbas A.S.,Darweesh T.M. 2016. Preparation and Characterization of Activated Carbon for Adsorption of Fluoroquinolones Antibiotics. Journal of Engineering, 22, 140–157.
  • 2. Acero J.L.,Benitez F.J.,Leal A.I.,Real F.J.,Teva F. 2010. Membrane filtration technologies applied to municipal secondary effluents for potential reuse. Journal of Hazardous Materials.
  • 3. Agboola O.S.,Bello O.S. 2020. Enhanced adsorption of ciprofloxacin from aqueous solutions using functionalized banana stalk. Biomass Conversion and Biorefinery, 12, 5463–5478.
  • 4. Ahmed M.J.,Theydan S.K. 2014. Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis. Journal of the Taiwan Institute of Chemical Engineers, 45, 219–226.
  • 5. Ahmed M.J.,Hameed B.H.,Hummadi E.H.2020. Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. Carbohydrate Polymers, 247, 116690.
  • 6. Ali M.E.M.,El-aty A.M.A.,Badawy M.I.,Ali R.K.2018. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus. Ecotoxicology and Environmental Safety, 151, 144–152.
  • 7. Anastopoulos I.,Kyzas G.Z. 2015. Progress in batch biosorption of heavy metals onto algae. Journal of Molecular Liquids, 209, 77–86.
  • 8. Aristilde L.,Melis A.,Sposito G. 2010. Inhibition of photosynthesis by a fluoroquinolone antibiotic. Environmental Science and Technology.
  • 9. Audenaert W.T.M.,Vandierendonck D.,Van Hulle S.W.H.,Nopens I. 2013. Comparison of ozone and HO induced conversion of effluent organic matter (EfOM) using ozonation and UV/H2O2 treatment. Water Research.
  • 10. Babel S.,Kurniawan T.A. 2004. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere.
  • 11. Buerge I.J.,Poiger T.,Müller M.D.,Buser H.R. 2003. Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental Science and Technology.
  • 12. Crini G.,Badot P.M. 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science (Oxford).
  • 13. Dalal S.R.,Hussein M.H.,El-Naggar N.E.,Mostafa S.I.,Shaaban-Dessuuki S.A. 2021. Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery. Scientific Reports, 11, 1–17.
  • 14. De la Cruz N.,Giménez J.,Esplugas S.,Grandjean D.,De Alencastro L.F.,Pulgarín C. 2012. Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research.
  • 15. Deziel N. 2014. Pharmaceuticals in Wastewater Treatment Plant Effluent Waters. University of Minnesota, Morris.
  • 16. Dijkshoorn L.,Nemec A.,Seifert H. 2007. An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nature Reviews Microbiology.
  • 17. Elangovan R.,Philip L.,Chandraraj K. 2008. Biosorption of hexavalent and trivalent chromium by palm flower (Borassus aethiopum). Chemical Engineering Journal.
  • 18. Elgarahy A.M.,Elwakeel K.Z.,Mohammad S.H.,Elshoubaky G.A. 2020. Multifunctional eco-friendly sorbent based on marine brown algae and bivalve shells for subsequent uptake of Congo red dye and copper(II) ions. Journal ofEnvironmental Chemical Engineering, 8.
  • 19. Gimeno O.,García-Araya J.F.,Beltrán F.J.,Rivas F.J.,Espejo A. 2016. Removal of emerging contaminants from a primary effluent of municipal wastewater by means of sequential biological degradation-solar photocatalytic oxidation processes. Chemical Engineering Journal.
  • 20. Githinji L.J.M.,Musey M.K.,Ankumah R.O. 2011. Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, and Soil Pollution.
  • 21. Gupta V.K.,Carrott P.J.M.,Ribeiro Carrott M.M.L.,Suhas. 2009. Low-Cost adsorbents: Growing approach to wastewater treatmenta review. Critical Reviews in Environmental Science and Technology, 39, 783–842.
  • 22. Gupta V.K.,Saleh T.A. 2013. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-An overview. Environmental Science and Pollution Research, 20, 2828–2843.
  • 23. Hammud H.H.,Fayoumi L.,Holail H.,Mostafa E.S.M.E. 2011. Biosorption Studies of Methylene Blue by Mediterranean Algae Carolina and Its Chemically Modified Forms. Linear and Nonlinear Models’ Prediction Based on Statistical Error Calculation. International Journal of Chemistry.
  • 24. Han R.W.,Zheng N.,Yu Z.N.,Wang J.,Xu X.M.,Qu X.Y.,Li S.L.,Zhang Y.D.,Wang J.Q. 2015. Simultaneous determination of 38 veterinary antibiotic residues in raw milk by UPLC-MS/MS. Food Chemistry.
  • 25. Hirsch R.,Ternes T.,Haberer K.,Kratz K.L. 1999. Occurrence of antibiotics in the aquatic environment. Science of the Total Environment.
  • 26. Indhumathi P.,Soundararajan M.,Shabudeen P.S.S.,Suresh E.S.A. 2013. Utilization, isolation and characterization of chlorella vulgaris for carbon sequestration and waste water treatment by performing ftir spectral studies. Asian Jr. of Microbiol. Biotech. Env. Sc., 15, 661–666.
  • 27. Irem S.,Mahmood Khan Q.,Islam E.,Jamal Hashmat A.,Anwar ul Haq M.,Afzal M.,Mustafa T. 2013. Enhanced removal of reactive navy blue dye using powdered orange waste. Ecological Engineering, 58, 399–405.
  • 28. Javed M.A.,Bhatti H.N.,Hanif M.A.,Nadeem R. 2007. Kinetic and Equilibrium Modeling of Pb(II) and Co(II) Sorption onto Rose Waste Biomass. Separation Science and Technology, 42, 3641–3656.
  • 29. Jiang W.T.,Chang P.H.,Wang Y.S.,Tsai Y., Jean J.S.,Li Z.,Krukowski K. 2013. Removal of ciprofloxacin from water by birnessite. Journal of Hazardous Materials.
  • 30. Karthikeyan K.G. 2005. Sorption of the Antimicrobial Ciprofloxacin To Aluminum and Iron Hydrous Oxides. Environmental Science, Engineering, and Technology, 39, 9166–9173.
  • 31. Kelly B.C.,Ikonomou M.G.,Blair J.D.,Morin A.E.,Gobas F.A.P.C. 2007. Food web-specific biomagnification of persistent organic pollutants. Science.
  • 32. Klavarioti M.,Mantzavinos D.,Kassinos D. 2009. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35, 402–417.
  • 33. Kumar M.,Singh A.K.,Sikandar M. 2020. Biosorption of Hg (II) from aqueous solution using algal biomass: kinetics and isotherm studies. Heliyon, 6.
  • 34. Kumar Y.P.,King P.V.S.R.K.P. 2006. Zinc biosorption on Tectona grandis L.f. leaves biomass: Equilibrium and kinetic studies. Chemical Engineering Journal 124., 124, 63–70.
  • 35. Kumari N.,Singh R.K. 2019. Biofuel and co-products from algae solvent extraction. Journal of Environmental Management., 247, 196–204.
  • 36. Kümmerer K. 2009. Chemosphere Antibiotics in the aquatic environment – A review – Part I. Chemosphere, 75, 417–434.
  • 37. Lapworth D.J.,Baran N.,Stuart M.E.,Ward R.S. 2012. Emerging organic contaminants in groundwater : A review of sources, fate and occurrence. Environmental Pollution, 163, 287–303.
  • 38. Leng L.,Yuan X.,Zeng G.,Shao J.,Chen X.,Wu Z.,Wang H.,Peng X. 2015a. Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel.
  • 39. Leng L. Jian,Yuan X.Z.,Huang H.J.,Wang H.,Wu Z.B.,HuanF.L.,Peng X., HongC.X.,MingZ.G. 2015b. Characterization and application of biochars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge. Fuel Processing Technology, 129, 8–14.
  • 40. Li Y.,Horsman M.N.W.,Lan C.Q.Nathalie Dubois-Calero, 2008. Biofuels from Microalgae. Biotechnology Progress, 24, 277–321.
  • 41. Lindsey M.E.,Meyer M.,Thurman E.M. 2001. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry.
  • 42. Mahmood W.M.A. W.,Theodoropoulos C.,Gonzalez-Miquel M., 2017. Enhanced microalgal lipid extraction using bio-based solvents for sustainable biofuel production. Green Chemistry, 19, 1–13.
  • 43. Mahmood W.M.A.W., Lorwirachsutee A., Theodoropoulos C., Gonzalez-Miquel M. 2019. Polyol-based deep eutectic solvents for extraction of natural polyphenolic antioxidants from Chlorella vulgaris WAN. ACS Sustainable Chem. Eng., 7, 5018–5026.
  • 44. Marchal G.,Smith K.E.C.,Rein A.,Winding A.,Trapp S.,Karlson U.G. 2013. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. Chemosphere, 90, 1767–1778.
  • 45. Mata T.M.,Martins A.A.,Caetano N.S. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews., 14, 217–232.
  • 46. Mathys A.,Canelli G.,Martínez P.M.,Austin S.,Ambühl M.E.,Dionisi F.,Bolten C. J.,Carpine R.,Neutsch L. 2021. Biochemical and Morphological Characterization of Heterotrophic Crypthecodinium cohnii and Chlorella vulgaris Cell Walls. Journal of Agricultural and Food Chemistry.
  • 47. Mishra A.,Jha B.2009. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress Avinash. Bioresource Technology.
  • 48. Mohammed-Ridha M.J.,Abdul-Ahad M.Y. 2014. Adsorption of Levofloxacine Antibacterial from Contaminated Water by Non – Conventional Low Cost Natural Waste Materials. Journal of Engineering, 20, 88–104.
  • 49. Möller P.,Dulski P.,Bau M.,Knappe A.,Pekdeger A.,Sommer-Von Jarmersted C. 2000. Anthropogenic gadolinium as a conservative tracer in hydrology. Journal of Geochemical Exploration.
  • 50. Narayan R.,Meena R.P.,Patel A.K.,Prajapati A.K.,Srivastava S.,Mondal M.K. 2016. Characterization and Application of Biomass Gasifier Waste Material for Adsorptive Removal of Cr (VI) from Aqueous Solution Ram. Environmental Progress & Sustainable Energy, 35, 95–102.
  • 51. Nguyen T.A.H.,Ngo H.H.,Guo W.S.,Zhang J.,Liang S.,Yue Q.Y.,Li Q.,Nguyen T.V. 2013. Applicability of agricultural waste and byproducts for adsorptive removal of heavy metals from wastewater. Bioresource Technology.
  • 52. Nithya K.,Sathish A.,Pradeep K.,Kiran Baalaji S. 2019. Algal biomass waste residues of Spirulina platensis for chromium adsorption and modeling studies. Journal of Environmental Chemical Engineering.
  • 53. Ojedokun A.T.,Bello O.S. 2017. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon. Applied Water Science.
  • 54. Oliveira R.C.,Hammer P.,Guibal E.,Taulemesse J.M.,Jr. O.G. 2014. Characterization of metal–biomass interactions in the lanthanum(III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: Preliminary studies. Chemical Engineering Journal, 239, 381–391.
  • 55. Peñafiel M.E.,Vanegas E.,Bermejo D.,Matesanz J.M.,Ormad M.P. 2019. Organic residues as adsorbent for the removal of ciprofloxacin from aqueous solution. Hyperfine Interact., 240.
  • 56. Picó Y.,Andreu V. 2007. Fluoroquinolones in soil-risks and challenges. Analytical and Bioanalytical Chemistry.
  • 57. Pradhan A.,Sukla L.B.,Mishra B.B.,Devi N. 2019. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production, 209, 617–629.
  • 58. Ramanan R.,Kim B.H.,Cho D.H.,Oh H.M.,Kim H.S. 2016. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances.
  • 59. Rodriguez-Mozaz S.,Ricart M.,Köck-Schulmeyer M.,Guasch H.,Bonnineau C.,Proia L.,de Alda M.L.,Sabater S.,Barceló D. 2015. Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration-reverse osmosis (MF-RO) pilot plant. Journal of Hazardous Materials, 282, 165–173.
  • 60. Ruiying G.,Jianlong W.2007. Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge Gao. Journal of Hazardous Materials, 145, 398–403. Effects.
  • 61. Padmavathy K.S.., Madhub G., Haseena P.V. 2016. A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles. Procedia Technology, 24, 585–594.
  • 62. Santaeufemia S.,Torres E.,Abalde R.M., Abalde J. 2016. Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. Journal of Hazardous Materials, 320, 315–325.
  • 63. Sulaymon A.H.,Ebrahim S.E.,Ridha M.J.M. 2012. Comparative Biosorption Of Pb(II), Cr(III) AND Cd(II) Ions In Single Component System By Live And Dead Anaerobic Biomass, Bath Study. Journal of Engineering, 18, 710–716.
  • 64. Suresh Kumar K.,Dahms H.U.,Won E.J.,Lee J.S.,Shin K.H. 2015. Microalgae - A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety.
  • 65. Thung I.,Aramin H.,Vavinskaya V.,Gupta S.,Park J.Y.,Crowe S.E.,Valasek M.A. 2016. Review article: The global emergence of Helicobacter pylori antibiotic resistance. Alimentary Pharmacology and Therapeutics.
  • 66. Tokuşoglu O., Ünal M.K. 2003. Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science.
  • 67. Kolpin W.D.,Furlong E.T.,Meyer M.T.,Thurman E.M.,Zaugg S.D.,Barber L.B.,Buxton H.T.2002. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999-2000: A National Reconnaissance. Environ. Sci. Technol., 36, 1202–1211.
  • 68. Wang W.,Li X.,Yuan S.,Sun J.,Zheng S. 2016. Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins. Chemosphere, 160, 71–79.
  • 69. Xie Y.,Li H.,Wang X.,Ng I.S.,Lu Y.,Jing K. 2014. Kinetic simulating of Cr(VI) removal by the waste Chlorella vulgaris biomass. Journal of the Taiwan Institute of Chemical Engineers.
  • 70. Xiong J.Q., Kim S.J., Kurade M.B., Govindwar S., Abou-Shanab R.A.I., Kim J.R., Roh H.S., Khan M.A., Byong-Hun Jeon B.H.2019. Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: toxicity, biodegradation, and metabolic fate. Journal of Hazardous Materials., 370, 138–146.
  • 71. Qiang X.J.,Kurade M.B.,Hun J.B. 2016. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chemical Engineering Journal.
  • 72. Yadav A.K.,Abbassi R.,Gupta A.,Dadashzadeh M. 2013. Removal of fluoride from aqueous solution and groundwater by wheat straw, Sawdust and activated bagasse carbon of sugarcane. Ecological Engineering, 52, 211–218.
  • 73. Li Y.Z., Guo L.Y., Fei T.X.,Bo L.S.,Ming Z.G.,Hua J.L.,Fang L.M.,Zhou Z.,Liu S.,Xi, C.X. 2017. Immobilization of aqueous and sediment-sorbed ciprofloxacin by stabilized Fe-Mn binary oxide nanoparticles: Influencing factors and reaction mechanisms. Chemical Engineering Journal, 314, 612–621.
  • 74. Yang C.,Wang J.,Lei M.,Xie G.,Zeng G.,Luo S. 2010. Biosorption of zinc(II) from aqueous solution by dried activated sludge. Journal of Environmental Sciences.
  • 75. Yuan P.,Liu D.,Fan M.,Yang D.,Zhu R.,Ge F.,Zhu J.X.,He H. 2010. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. Journal of Hazardous Materials.
  • 76. Zhang C.L.,Qiao G.L.,Zhao F.,Wang Y. 2011. Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. Journal of Molecular Liquids, 163, 53–56.
  • 77. Zhang X.,Yan S.,Chen J.,Tyagi R.D.,Li J. 2020. Physical, chemical, and biological impact (hazard) of hospital wastewater on environment: presence of pharmaceuticals, pathogens, and antibiotic-resistance genes Xiaolei. Current Developments in Biotechnology and Bioengineering., 79–102.
  • 78. Zheng H.,Gao Z.,Yin F.,Ji X.,Huang H. 2012. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Bioresource Technology.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89ffb8ce-5dde-41f8-89ed-6187756dff94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.