PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of dual phase lag model parameters using the evolutionary algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Generalization of Fourier law, in particular the introduction of two ‘delay times’ (relaxation time τq and thermalization time τT) leads to the new form of energy equation called the dual-phase-lag model (DPLM). This equation should be applied in a case of microscale heat transfer modeling. In particular, DPLM constitutes a good approximation of thermal processes which are characterized by extremely short duration (e.g. ultrafast laser pulse), extreme temperature gradients and geometrical features of domain considered (e.g. thin metal film). The aim of considerations presented in this paper is the identification of two above mentioned positive constants τq, τT. They correspond to the relaxation time, which is the mean time for electrons to change their energy states and the thermalization time, which is the mean time required for electrons and lattice to reach equilibrium. In this paper the DPLM equation is applied for analysis of thermal processes proceeding in a thin metal film subjected to a laser beam. At the stage of computations connected with the identification problem solution the evolutionary algorithms are used. To solve the problem the additional information concerning the transient temperature distribution on a metal film surface is assumed to be known.
Rocznik
Strony
277--281
Opis fizyczny
Bibliogr. 11 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Mathematics, Czestochowa University of Technology, Dabrowskiego 73, 42-200 Czestochowa, Poland
autor
  • Department of Strength of Materials and Computational Mechanics, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] M.A. Al-Nimr, Heat transfer mechanisms during short duration laser heating of thin metal films, International Journal of Thermophysics, Vol. 18, No 5, 1997, pp. 1257-1268.
  • [2] Z. Lin, L.V. Zhigilei, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Physical Review, B, Vol. 77, 2008, 075133-1-075133-17.
  • [3] E. Majchrzak, B. Mochnacki, A.L. Greer, J.S. Suchy, CMES: Computer Modelling in Engineering & Sciences, Vol. 41, No 2, 2009, pp. 131-146.
  • [4] W. Tian, R. Yang, Phonon transport and thermal conductivity percolation in random nanoparticle composites, CMES: Computer Modeling in Engineering & Sciences, Vol. 24, No 2, 3, 2008, pp. 123-142.
  • [5] M.N. Ozisik, D.Y. Tzou, On the wave theory in heat conduction, Journal of Heat Transfer, Vol. 116, 1994, pp. 526-535.
  • [6] D.Y. Tzou, K.S. Chiu, Temperature-dependent thermal lagging in ultrafast laser heating, Int. Journal of heat and Mass Transfer, Vol. 44, pp. 1725-1734.
  • [7] I.K. Kaba, W. Dai, A stable three-level finite difference scheme for solving the parabolic two-step model in a 3D micro-sphere heated by ultrashort-pulsed lasers, Journal of Computational and Applied Mathematics, 181, 2005, pp. 125-147.
  • [8] J.K. Chen, J.E. Beraun, Numerical study of ultrashort laser pulse interactions with metal films, Numerical Heat Transfer, Part A, 40, 2001, pp. 1-20.
  • [9] B. Mochnacki, J.S. Suchy, Numerical methods in computations of foundry processes, Polish Foundrymen's Technical Association, Cracow, 1995.
  • [10] D.W. Tang, N. Araki, Int. Journal of Heat and Mass Transfer, Vol. 32, 1999, pp. 855-860.
  • [11] E. Majchrzak, J. Poteralska, Two temperature model of microscopic heat transfer, Computer Methods in Material Science, 11, 2, 2011, pp. 337-342.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89fc1863-293f-4e98-9923-22d6fc423f0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.