PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Cross-variation of Young integral with respect to long-memory fractional Brownian motions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the asymptotic behaviour of the cross-variation of two-dimensional processes having the form of a Young integral with respect to a fractional Brownian motion of index H > 1/2 . When H is smaller than or equal to 3/4 , we show asymptotic mixed normality. When H is stricly greater than 3/4 , we obtain a limit that is expressed in terms of the difference of two independent Rosenblatt processes.
Rocznik
Strony
35--46
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Faculté des Sciences, de la Technologie, et de la Communication, UR en Mathématiques, Université de Luxembourg, 6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
autor
  • Institut Elie Cartan, UMR 7502, Nancy Université – CNRS – INRIA, Campus Aiguillettes, B.P. 70239, F-54506, Vandoeuvre-lès-Nancy, France
Bibliografia
  • [1] F. E. Benth, On arbitrage-free pricing of weather derivatives based on fractional Brownian motion, Appl. Math. Finance 10 (2003), pp. 303-324.
  • [2] P. Breuer and P. Major, Central limit theorems for non-linear functionals of Gaussian fields, J. Multivariate Anal. 13 (1983), pp. 425-441.
  • [3] J. M. Corcuera, D. Nualart, and M. Podolskij, Asymptotics of weighted random sums, Commun. Appl. Ind. Math. 6 (1) (2014).
  • [4] J. M. Corcuera, D. Nualart, and J. H. C. Woerner, Power variation of some integral long memory process, Bernoulli 12 (4) (2006), pp. 713-735.
  • [5] A. M. Garcia, E. Rodemich, and H. Rumsey, A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J. 20 (1978), pp. 565-578.
  • [6] S. C. Kou, Stochastic modeling in nanoscale biophysics: subdiffusion within proteins, Ann. Appl. Stat. 2 (2008), pp. 501-535.
  • [7] S. C. Kou and X. S. Xie, Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule, Phys. Rev. Lett. 93 (2004).
  • [8] D. Meintrup, G. Denk, and S. Scheffler, Transient noise simulation: modeling and simulation of 1/f noise, in: Modeling, Simulation, and Optimization of Integrated Circuits, K. Antreich et al. (Eds.), Internat. Ser. Numer. Math. 146 (2001), pp. 251-267.
  • [9] I. Nourdin, Selected Aspects of Fractional Brownian Motion, Bocconi Springer Ser., Vol. 4, Springer Milan, 2012.
  • [10] I. Nourdin, D. Nualart, and C. A. Tudor, Central and non-central limit theorems for weighted power variations of fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 46 (4) (2009), pp. 1055-1079.
  • [11] G. Peccati and C. A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals, in: Séminaire de Probabilités XXXVIII, Lecture Notes in Math., Vol. 1857, Springer, 2005, pp. 247-262.
  • [12] J. Syroka, D. Brody, and M. Zervos, Dynamical pricing of weather derivatives, Quant. Finance 2 (2002), pp. 189-198.
  • [13] M. S. Taqqu,Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrsch. Verw. Gebiete 31 (1975), pp. 287-302.
  • [14] M. S. Taqqu, The Rosenblatt process, in: Selected Works of Murray Rosenblatt, R. A. Davis, K.-S. Lii, and D. N. Politis (Eds.), Sel. Works Probab. Stat., 2011, pp. 29-45.
  • [15] C. A. Tudor, Analysis of the Rosenblatt process, ESAIM Probab. Stat. 12 (2008), pp. 230-257.
  • [16] L. C. Young, An inequality of the Hölder type connected with Stieltjes integration, Acta Math. 67 (1936), pp. 251-282.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89f937ec-63f7-404b-a498-69280670d059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.