PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feasibility study of biogas project development : technology maturity, feedstock, and utilization pathway

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biogas production has a big potential to provide clean energy. To evaluate the future production and maturity of biogas technology the generalized Weng model was proved to be effective, due to it has the minimum error. The simple algorithms to determine its parameters have been proposed. The simulation results for China, USA, and EU have been presented. The quantity and quality analysis for biogas feedstock has been carried out. Energy Return on Energy Invested (EROEI) indicator for different biofuels was considered. According to analysis done biogas from maize residue and chicken manure has high EROEI. Shannon Index was suggested to evaluate the diversity of feedstock supply. Biomass energy cost indicator was grounded to be used for feedstock energy and cost assessment. Biogas utilization pathways have been shown. Biogas boilers and CHP have the highest thermal efficiency, but biogas (biomethane) has the highest potential to earn as a petrol substitute. Utilization of biogas upgrading by-product (carbon dioxide) enhances profitability of biogas projects. Methods to assess the optimal pathways have been described.
Słowa kluczowe
Rocznik
Strony
68--83
Opis fizyczny
Bibliogr. 111 poz., tab., wykr.
Twórcy
  • University of Opole, Poland
  • Mykolayiv National Agricultural University, Ukraine
Bibliografia
  • 1. 2G (2G Energy AG). (2017). Product range, ( http://www.2-g.com/module/designvorlagen/downloads/2g_product_range.pdf (06.03.2018)).
  • 2. Arodudu, O., Helming, K., Wiggering, H. & Voinov, A. (2017). Bioenergy from low-intensity agricultural systems: an energy efficiency analysis, Energies, 19(1), pp. 1-18. doi:10.3390/ en10010029.
  • 3. Arodudu, O., Voinov, A. & Duren, van I. (2013). Assessing bioenergy potential in rural areas - A NEG-EROEI approach, Biomass and Bioenergy, 58, pp. 350-364. doi: 10.1016/j.biombioe.2013.07.020.
  • 4. Arodudu, O.T., Voinov, A. & Duren, van I.C. (2012). Assessing bioenergy potentials in rural landscapes, In: Proceedings of IAIA 12 conference: Energy future, the role of impact assessment: 32nd annual meeting of the International Association of Impact Assessment, pp. 1-6. (https://research.utwente.nl/en/publications/ assessing-bioenergy-potentials-in-rural-landscapes (13.12.2012)).
  • 5. Atamanyuk, I.P. (2002). Polynomial algorithm of optimal extrapolation of stochastic system parameters, International Journal “Upravlyayushchie Sistemy i Mashiny” (International Journal "Control Systems and Computers"), 1, pp. 16-19.
  • 6. Atamanyuk, I.P. (2005). Algorithm of extrapolation of a nonlinear random process on the basis of its canonical decomposition, Cybernetics and Systems Analysis, 41(2), pp. 131-139. doi: 10.1007/s10559-005-0059-y.
  • 7. Bang, C., Vitina, A., Gregg, J.S. & Lindboe, H.H. (2013). Analysis of biomass prices, future Danish prices for straw, wood chips and wood pellets "FinalReport"- 18.06.2013. Danish Energy Agency’s (DEA): Ea Energy Analyses. (http://www.ea-energianalyse.dk/ reports/1280_analysis_of_biomass_prices.pdf (08.03.2018)).
  • 8. Baños, R., Manzano-Agugliaro, F., Montoya, F.G., Gil C., Alcayde, A. & Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy, Renewable and Sustainable Energy Reviews, 15(4), pp. 1753-1766. doi: 10.1016/j.rser.2010.12.008.
  • 9. Basset, N., Kermah, M., Rinaldi, D. & Scudellaro, F. (2010). The net energy of biofuels, in: EPROBIO IP June 2010. (http://www.iperasmuseprobio.unifg.it/dwn/THENETENERGYOFBIOFUELS.pdf (03.03.2018)).
  • 10. Bekker, M. & Oechsner, H. (2010). Practical experience of using a biogas-powered micro gas turbine, Landtechnik, 65(2), pp. 136-138. (https://www.landtechnik-online.eu/ojs-2.4.5/index.php/landtechnik/article/download/2010-2-136-138/991 (06.03.2018)).
  • 11. Bilan, Y, Nitsenko, V. & Havrysh, V. (2017). Energy aspects of vertical integration in agriculture, Rynek Energii, 5(132), pp. 98-110 (http://rynek-energii.pl/pl/node/3549 (08.03.2018)).
  • 12. Bohutskyi, P., Ketter, B., Chow, S., Adams, K., Betenbaugh, M.J., Allnutt, F.C.T. & Bouwer, E.J. (2015). Anaerobic digestion of lipid-extracted auxenochlorella protothecoides biomass for methane generation and nutrient recovery, Bioresources Technology, 183, pp. 229-239. doi: 10.1016/j.biortech.2015.02.012.
  • 13. Bojesen, M., Birkin, M. & Clarke, G. (2014). Spatial competition for biogas production using insights from retail location models, Energy, 68, pp. 617-628. doi: 10.1016/j.energy.2013.12.039.
  • 14. Bojnec, S. & Papler, D. (2013). Biogas energy development in Slovenia, Annals of the Faculty of Engineering Hunedoara, 11(1), pp. 77-86. doi: 10.13140/RG.2.1.2542.0644.
  • 15. Börjesson, M. & Ahlgren, E.O. (2012). Cost-effective biogas utilisation - A modelling assessment of gas infrastructural options in a regional energy system, Energy, 48(1), pp. 212-226. doi: 10.1016/j.energy.2012.06.058 BP (2017).
  • 16. BP Statistical Review of World Energy 2017 (https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf (02.03.2018)).
  • 17. Brandt, A.R. (2010). Review of mathematical models of future oil supply: historical overview and synthesizing critique, Energy, 35(9), pp. 3958-3974. doi: 10.1016/j.energy.2010.04.045.
  • 18. Bravo, M.D.L., Naim, M.M. & Potter, A. (2012). Key issues of the upstream segment of biofuels supply chain: a qualitative analysis, Logistics Research, 5, pp. 21-31. Doi: 10.1007/s12159-012-0077-x.
  • 19. Brown, N., Edström, M., Hansson, M. & Algerbo, P.-A. (2010). Evaluation of farm biogas plant with micro turbine for cogeneration production. JTI report Circulation & Waste, no. 46 JTI, Uppsala (in Swedish) (http://www.jti.se/uploads/jti/r-46%20nb,%20med_lag.pdf (08.03.2018)).
  • 20. Cao, J., Yu, G. & Xie, Y (2014). The solving method of generalized Weng model parameters based on curve fitting, Journal of Chemical and Pharmaceutical Research, 6(12), pp. 734-737.
  • 21. Carchesio, M., Tatáno, F., Lancellotti, I., Taurino, R., Colombo, E. & Barbieri, L. (2014). Comparison of biomethane production and digestate characterization for selected agricultural substrates in Italy, Environmental Technology, 35(17), pp. 2212-2226. doi: 10.1080/09593330.2014.898701.
  • 22. Cerović, L., Maradin, D. & Cegar, S. (2014). From the restructuring of the power sector to diversification of renewable energy sources: preconditions for efficient and sustainable electricity market, International Journal of Energy Economics and Policy, 4(4), pp. 599-609.
  • 23. Chasnyk, O., Sołowski, G. & Shkarupa, O. (2015). Historical, technical and economic aspects of biogas development: Case of Poland and Ukraine, Renewable and Sustainable Energy Reviews, 52, pp. 227-239. doi: 10.1016/j.rser.2015.07.122.
  • 24. Chen, H., Zhou, D., Luo, G., Zhang, S. & Chen, J. (2015). Macroalgae for biofuels production: Progress and perspectives, Renewable & Sustainable Energy Reviews, 47, pp. 427-437. doi.org/10.1016/j. rser.2015.03.086.
  • 25. Chodkowska-Miszczuk, J., Kulla, M. & Novotny, L. (2017). The role of energy policy in agricultural biogas energy production in Visegrad countries, Bulletin of Geography. Socio-economic Series, 35, pp. 19-34. doi: 10.1515/bog-2017-0002.
  • 26. CLAL.IT (Italian Dairy Economic Consulting firm) (2018). Prices of livestock foods: fodder and by-products (https://www.clal.it/ en/?section=conf_foraggi (08.03.2018)).
  • 27. CSYD (China Statistical Yearbooks Database). (2015). China agriculture statistical report (1989-2014). China Agriculture Press, ISBN: 978-7-109-21107-0 (http://tongji.cnki.net/overseas/engnavi/HomePage.aspx?id=N2015110269&name=YZGNT&fl oor=1 (03.03.2018)). (in Chinese)
  • 28. Cucchiella, F. & D’Adamo, I. (2015). Residential photovoltaic plant: environmental and economical implications from renewable support policies, Clean Technologies and Environmental Policy, 17(7), pp. 1929-1944. doi: 10.1007/s10098-015-0913-1.
  • 29. Cucchiella, F., D’Adamo, I. & Gastaldi, M. (2015). Profitability analysis for biomethane: a strategic role in the italian transport sector, International Journal of Energy Economics and Policy, 5(2), pp. 440-449.
  • 30. Dekelver, G., Ruzigana, S. & Lam, J. (2005). Report on the Feasibility Study for a Biogas Support Programme in the Republic of Rwanda (http://www.susana.org/en/knowledge-hub/resources- and-publications/library/details/490 (09.03.2018)).
  • 31. Dell’Antonia, D., Cividino, S.R.S., Gubiani, R., Pergher, G., Monarca, D., Bedini, R. & Cecchini, M. (2014). Preliminary study of biogas production from agricultural waste in friuli Venezia Giulia (Nord-East of Italy), Environmental Sciences, 2(1), pp. 1-11. doi: 10.12988/es.2014.411.
  • 32. Delzeit, R. & Kellner, U. (2013). The impact of plant size and location on profitability of biogas plants in Germany under consideration of processing digestates, Biomass and Bioenergy, 52, pp. 43-53. doi: 10.1016/j.biombioe.2013.02.029.
  • 33. Dereli, R.K., Yangin-Gomec, C., Ozabali, A. & Ozturk, I. (2012). The feasibility of a centralized biogas plant treating the manure produced by an organized animal farmers union in Turkey, Water Science & Technology, 66(3), pp. 556-563. doi: 10.2166/wst.2012.203.
  • 34. Djatkov, D., Effenberger, M. & Martinov, M. (2014). Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems, Applied Energy, 134, pp. 163-175. doi: 10.1016/j.apenergy.2014.08.021.
  • 35. During, F.F.A., de Souza, J., Rossini, E.G. & Beluco A. (2017). Pre-feasibility study for the development of a biogas plant, Revista Espacios, 38(18). (http://www.revistaespacios.com/a17v38n18/a17v38n18p25.pdf (28.03.2018)).
  • 36. Dzene, I., Romagnoli, F., Seile, G. & Blumberga, D. (2014). Comparison of different biogas use pathways for Latvia: biogas use in CHP vs. biogas upgrading, The 9th International Conference "ENVIRONMENTAL ENGINEERING" 22-23 May 2014, Vilnius, Lithuania. doi: 10.3846/enviro.2014.017.
  • 37. EC (European Commission) (2017). Optimal use of biogas from waste stream. An assessment of the potential of biogas from digestion in the EU beyond 2020. (https://ec.europa.eu/energy/sites/ener/files/documents/ce_delft_3g84_biogas_beyond_2020_final_ report.pdf (04.03.2018)).
  • 38. Fallde, M. & Eklund, M. (2015). Towards a sustainable socio-technical system of biogas for transport: the case of the city of Linköping in Sweden, Journal of Cleaner Production, 98(1), pp. 17-28. doi: 10.1016/j.jclepro.2014.05.089.
  • 39. FAO (Food and Agriculture Organization of the United Nations) (2008). Forests and energy, key issues. FAO Forestry Paper 154. ISBN: 978-92-5-105985-2. (http://www.fao.org/docrep/010/i0139e/i0139e00.htm (03.03.2018)).
  • 40. Farooque, M., Leo, A., Rauseo, A. & Wang, J. (2015). Efficient and ultra-clean use of biogas in the fuel cell - the DFC experience, Energy, Sustainability and Society, 5, pp. 246-256. doi: 10.1186/ s13705-015-0041-0.
  • 41. Gagnon, N., Hall, C. & Brinker, L. (2009). A preliminary investigation of the energy return on energy investment for global oil and gas production, Energies, 2, pp. 490-503. doi: 10.3390/en20300490.
  • 42. GE (General Electric power) (2018). Reciprocating Engines. (https://www.gepower.com/gas/reciprocating-engines (04.03.2018)).
  • 43. Gebrezgabher, S.A., Meuwissen, M.P., Prins, B.A. & Lansink, A.G.O. (2010). Eco-nomic analysis of anaerobic digestion - a case of Green power biogas plant in The Netherlands, NJAS-Wageningen Journal of Life Sciences, 57(2), pp. 109-115. doi: 10.1016/j. njas.2009.07.006.
  • 44. Gong, J. & You, F. (2014). Optimal design and synthesis of algal biorefinery processes for biological carbon sequestration and utilization with zero direct greenhouse gas emissions, Industrial & Engineering Chemistry Research, 53(4), pp. 1563-1579. doi: 10.1021/ie403459m.
  • 45. Goulding, D. & Power, N. (2013). Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel? Renewable Energy, 53, pp. 121-131. http://dx.doi.org/10.1016/). renene.2012.11.001.
  • 46. Gu, L., Zhang, YX., Wang, JZ., Chen, G. & Battye, H. (2016). Where is the future of China’s biogas? Review, forecast, and policy implications, Petroleum Science, 13(3), pp. 604-624. doi: 10.1007/s12182-016-0105-6.
  • 47. Hall, C. & Klitgaard, K. (2012). Energy and the Wealth of Nations: Understanding the Biophysical Economy. Springer Publishing Company, New York 2012. doi: 10.1007/978-1-4419-9398-4.
  • 48. Hall, C.A.S., Balogh, S. & Murphy, D.J.R. (2009). What is the minimum EROI that a sustainable society must have? Energies, 2(1), pp. 25-47. doi: 10.3390/en20100025.
  • 49. Hall, C.A.S., Lambert, J.G. & Balogh, S.B. (2014). EROI of different fuels and the implications for society, Energy Policy, 64, pp. 141-152. doi: 10.1016/j.enpol.2013.05.049.
  • 50. Havrysh, V. & Nitsenko, V. (2016). Current state of world alternative motor fuel market, Actual Problems of Economics, 7(181), pp. 41-52. (http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?C21COM=2&I21DBN=UJRN&P21DBN=UJR N&IMAGE_FILE_DOWNLOAD=1&Image_file_name=PDF/ ape_2016_7_7.pdf (08.03.2018)).
  • 51. Hook, M., Li, J., Oba, N. & Snowden, S. (2011). Descriptive and predictive growth curves in energy system analysis, Natural Resources Research, 20(2), pp. 103-116. doi: 10.1007/s11053- 011-9139-z.
  • 52. Hughes, J.D. (2013). Drill, Baby, Drill: Can Unconventional Fuels Usher in a New Era of Energy Abundance? The Post Carbon Institute, Santa Rosa 2013.
  • 53. IEA (International Energy Agency) (2017). Key World Energy Statistics 2017 (https://www.iea.org/publications/freepublications /publication/key-world-energy-statistics.html (02.03.2018)).
  • 54. Igliński, B., Buczkowski, R. & Cichosz, M. (2015). Biogas production in Poland - Current state, potential and perspectives, Renewable and Sustainable Energy Reviews, 50, pp. 686-695. doi: 10.1016/j. rser.2015.05.013.
  • 55. IRENA (International Renewable Energy Agency). (2016). Renewable Energy and Jobs, Annual Review 2016, ISBN: 978-92-95111-89-9 (http://www.irena.org/publications/2016/May/Renewable-Energy-and-Jobs-Annual-Review-2016/ (02.03.2018)).
  • 56. IRENA (International Renewable Energy Agency) (2017). Biogas for road vehicles. Technology brief. ISBN: 978-92-9260-002-0 (http://www.irena.org/publications/2017/Mar/Biogas-for-road-vehicles-Technology-brief (03.03.2018)).
  • 57. Jansen, J.C., van Arkel, W.G. & Boots, M.G. (2004). Desigining indicators of long-term energy supply security, ECN-C-04-007. (https://www.ecn.nl/publicaties/PdfFetch.aspx?nr=ECN-C--04-007 (09.03.2018)).
  • 58. JICA (Japan International Cooperation Agency) (2015). Simple Pre-Feasibility of Biogas Projects (http://open_jicareport.jica. go.jp/pdf/12229423_04.pdf (09.03.2018)).
  • 59. Kalinichenko, A., Havrysh, V. & Perebyynis, V. (2017). Sensitivity analysis in investment project of biogas plant, Applied Ecology and Environmental Researches, 15(4), pp. 969-985. doi: 10.15666/aeer/1504_969985.
  • 60. Kalinichenko, A., Havrysh, V. & Perebyynis, V. (2016). Evaluation of biogas production and usage potential, Ecological Chemistry and Engineering S., 23(3), pp. 387-400. doi: 10.1515/eces-2016-0027.
  • 61. Kampman, B., Leguijt, C., Scholten, T., Tallat-Kelpsaite, J., Brückmann, R., Maroulis, G., Lesschen, J.P., Meesters, K., Sikirica, N. & Elbersen, B. (2016). Optimal use of biogas from waste streams. An assessment of the potential of biogas from digestion in the EU beyond 2020. European Commission. (https://ec.europa.eu/energy/sites/ener/files/documents/ce_delft_3g84_biogas_beyond_2020_final_report.pdf (08.03.2018)).
  • 62. Kang, J.Y., Kang, D.W., Kim, T.S. & Hur, K.B. (2014). Comparative economic analysis of gas turbine-based power generation and combined heat and power systems using biogas fuel, Energy, 67, pp. 309-318. doi: 10.1016/j.energy.2014.01.009.
  • 63. Keane, G. & Foley, J. (2014). Does maize make sense? Farm Ireland, (https://www.independent.ie/business/farming/does-maize-make-sense-30017476.html (10.03.2018)).
  • 64. Kruyt, B., van Vuuren, D.P., de Vries, H.J.M. & Groenenberg, H. (2009). Indicators for energy security, Energy Policy, 37(6), pp. 2166-2181. doi: 10.1016/j.enpol.2009.02.006.
  • 65. Lantz, M. (2012). The economic performance of combined heat and power from biogas produced from manure in Sweden - a comparison of different CHP technologies, Applied Energy, 98, pp. 502-511. doi: 10.1016/j.apenergy.2012.04.015.
  • 66. Li, L.D., Wang, Q., Liu, H. & Song, Y. (2008). Calculation and analysis of diversity of domestic primary energy supply, Journal of North-eastern University, 29(4), pp. 577-580. (http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBDX200804030.html (09.03.2018)).
  • 67. Lund, P.D. (2010). Exploring past energy changes and their implications for the pace of penetration of new energy technologies, Energy, 35, pp. 647-656. doi: 10.1016/j.energy.2009.10.037.
  • 68. Mansfield, E. (1961). Technical change and the rate of imitation, Econometrica, 29(4), pp. 741-766. doi: 10.2307/1911817.
  • 69. Mel, M., Ibrahim, M.M.A. & Setyobudi, R.H. (2016). Preliminary study of biogas upgrading and purification by pressure swing adsorption, AIP Conf Proc., 1755(1), pp. 130010:1-5, doi: 10.1063/1.4958554.
  • 70. Milledge, J.J. & Heaven, S. (2014). Methods of energy extraction from microalgal biomass: a review, Reviews in Environmental Science and Bio/Technology, 13(3), pp. 301-320. doi: 10.1007/ s11157-014-9339-1.
  • 71. Milledge, J.J. (2013). Energy Balance and Techno-Economic Assessment of Algal Biofuel Production Systems. Ph.D. Thesis, University of Southampton (UK), Southampton 2013 (https://eprints.soton.ac.uk/id/eprint/357074 (18.07.2017)).
  • 72. Milledge, J.J. & Heaven, S. (2017). Energy balance of biogas production from microalgae: effect of harvesting method, multiple raceways, scale of plant and combined heat and power generation, Journal of Marine Science and Engineering, 5(1), 9, pp. 1-15. doi: 10.3390/jmse5010009.
  • 73. Mohammed, M., Egyir, I.S., Donkor, A.K., Amoah, P., Nyarko, S., Boateng, K.K. & Ziwu, C. (2017). Feasibility study for biogas integration into waste treatment plants in Ghana, Egyptian Journal of Petroleum, 26(3), pp. 695-703. doi: 10.1016/j.ejpe.2016.10.004.
  • 74. Morero, B., Groppelli, E. & Campanella, E.A. (2015). Life cycle assessment of biomethane use in Argentina, Bioresources Technology, 182, pp. 208-216. doi: 10.1016/j.biortech.2015.01.077.
  • 75. Münster, M., Ravn, H., Hedegaard, K., Juul, N. & Ljunggren Söderman, M. (2015). Economic and environmental optimization of waste treatment, Waste Manage, 38, pp. 486-495. doi: 10.1016/j.wasman.2014.12.005.
  • 76. Murphy, J.D., McKeogh, E. & Kiely, G. (2004). Technical/economic/ environmental analysis of biogas utilisation, Applied Energy, 77(4), pp. 407-427. doi: 10.1016/j.apenergy.2003.07.005.
  • 77. Nzila, C., Dewulf, J., Spanjers, H., Tuigong, D., Kiriamiti, H. & Langenhove, H. (2012). Multi criteria sustainability assessment of biogas production in Kenya, Applied Energy, 93, pp. 496-506. doi: 10.1016/j.apenergy.2011.12.020.
  • 78. Palm, R. (2010). The economic potential for production of upgraded biogas used as vehicle fuel in Sweden. Report No. FRT 2010:03. Göteborg: Chalmers University of Technology. (http://publications.lib.chalmers.se/records/fulltext/126342.pdf (09.03.2018)).
  • 79. Pantaleo, A., Candelise, C., Bauen, A. & Shah, N. (2014). ESCO business models for biomass heating and CHP: Profitability of ESCO operations in Italy and key factors assessment, Renewable and Sustainable Energy Reviews, 30, pp. 237-253. doi: 10.1016/j. rser.2013.10.001.
  • 80. Pavlov, K., Gavrish, V. & Nitsenko, V. (2015). Biogas complexes: the economic rationale for use in various regions and countries of the world, Regional economics: theory and practice, 28, pp. 2-14 (https://cyberleninka.ru/article/n/biogazovye-kompleksy-ekonomicheskaya-tselesoobraznost-ispolzovaniya-v-razlichnyh-regionah-i-stranah-mira (09.03.2018)).
  • 81. Piwowar, A., Dzikuć, M. & Adamczyk, J. (2016). Agricultural biogas plants in Poland - selected technological, market and environmental aspects, Renewable and Sustainable Energy Reviews, 58, pp. 69-74. doi: 10.1016/j.rser.2015.12.153.
  • 82. Poeschl, M, Ward, S. & Owende, P. (2010). Prospects for expanded utilization of biogas in Germany, Renewable Sustainable Energy Reviews, 14(7), pp. 1782-1797. doi: 10.1016/j.rser.2010.04.010.
  • 83. Poggi-Varaldo, H.M., Muñoz-Páez, K.M., Escamilla-Alvarado, C., Robledo-Narváez, P.N., Ponce-Noyola, M.T., Calva-Calva, G., Ríos-Leal, E., Galíndez-Mayer, J., Estrada-Vázquez, C. & Ortega-Clemente, A. (2014). Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review, Waste Management and Research, 32(5), pp. 353-365. doi: 0734242X14529178.
  • 84. Poschl, M. Ward, S. & Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways, Applied Energy, 87(11), pp. 3305-3321. doi: 10.1016/j.apenergy.2010.05.011.
  • 85. Pukšec, T. & Duić, N. (2012). Economic viability and geographic distribution of centralized biogas plants: case study Croatia, Clean Technologies and Environmental Policy, 14(3), pp. 427-433. doi: 10.1007/s10098-012-0460-y.
  • 86. Rajendran, K., Kankanala, H.R., Martinsson, R. & Taherzadeh, M.J. (2014). Uncertainty over techno-economic potentials of biogas from municipal solid waste (MSW): a case study on an industrial process, Applied Energy, 125, pp. 84-92. doi: 10.1016/j.apenergy.2014.03.041.
  • 87. Rasul, M.G., Ault, C. & Sajjad, M. (2015). Bio-gas mixed fuel micro gas turbine co-generation for meeting power demand in Australian remote areas, Energy Procedia, 75, pp. 1065-1071. doi: 10.1016/j.egypro.2015.07.476.
  • 88. Ravina, M. & Genon, G. (2015). Global and local emissions of a biogas plant considering the production of biomethane as an alternative end-use solution, Journal of Cleaner Production, 102, pp. 115-126. doi: 10.1016/j.jclepro.2015.04.056.
  • 89. Reed, V. (2015). Algal progress report, Industrial Biotechnology, 11(1), pp. 3-5. doi: 10.1089/ind.2014.1544.
  • 90. REN 21 (Renewable Energy Policy Network for 21st Century) (2017). Distributed Renewable Energy Map, (http://www.ren21.net/wp-content/uploads/2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf (02.03.2018)).
  • 91. Silalertruksa, T. & Gheewala, S.H. (2010). Security of feedstocks supply for future bio-ethanol production in Thailand, Energy Policy, 38(11), pp. 7476-7486. doi: 10.1016/j.enpol.2010.08.034.
  • 92. Sills, D.L., Paramita, V., Franke, M.J., Johnson, M.C., Akabas, T.M., Greene, C.H. & Tester, J.W. (2012). Quantitative uncertainty analysis of life cycle assessment for algal biofuel production, Environmental Science & Technology, 47(2), pp. 687-694. doi: 10.1021/es3029236.
  • 93. Sorrell, S. (2010). Hubbert’s legacy: a review of curve-fitting methods to estimate ultimately recoverable resources, Natural Resources Research, 19(3), pp. 209-230.
  • 94. Tian, X., Zhang, X., Zeng, S., Xu, Y., Yao, Y., Chen, Y, Huang, L., Zhao, Y & Zhang, S. (2011). Process analysis and multi-objective optimization of ionic liquid containing acetonitrile process to produce 1,3-butadiene, Chemical Engineering & Technology, 34(6), pp. 927-936. doi: 10.1002/ceat.201000426.
  • 95. Trendewicz, A.A. & Braun, R.J. (2013). Techno-economic analysis of solid oxide fuel cell-based combined heat and power systems for biogas utilization at wastewater treatment facilities, Journal of Power Sources, 233, pp. 380-393. doi: 10.1016/j. jpowsour.2013.01.017.
  • 96. Trivett, A. & Hall, M. (2009). Feasibility of Biogas Production on Small Livestock Farms. UPEI Department of Engineering (http://www.matt-hall.ca/docs/Biogas-Report-Final.pdf (08.03.2018)).
  • 97. Tverberg, G. (2012). Oil supply limits and the continuing financial crisis, Energy, 37(1), pp. 27-34. doi: 10.1016/j.energy.2011.05.049.
  • 98. USDA’S GAIN (United States Department of Agriculture Global Agriculture Information Network) (2017). EU Biofuels Annual 2017. GAIN Report Number NL7015, (https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_The%20Hague_EU-28_6-19-2017.pdf (21.06.2017)).
  • 99. USEPA (United States Environmental Protection Agency). (2016). Biogas Facts and Trends. United States Environmental Protection Agency (https://www.epa.gov/agstar/agstar-data-and-trends#biogasfacts (02.03.2018)).
  • 100. Wajszczuk, K., Wawrzynowicz, J. & Pepliński, B. (2016). Plant production for biomass into energy: economics and energy efficiency view, Applied Studies in Agribusiness and Commerce, 10(1), pp. 65-71. doi: 10.19041/APSTRACT/2016/1/9.
  • 101. Wang, J.J., Jing, YY, Zhang, C.F. & Zhao, J.H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making, Renewable & Sustainable Energy Reviews, 13(9), pp. 2263-2278. doi: 10.1016/j.rser.2009.06.021.
  • 102. Wang, X., Lei, Y, Ge, J. & Wu S. (2015). Production forecast of China’s rare earths based on the Generalized Weng model and policy recommendations, Resources Policy, 43, pp. 11-18. doi: 10.1016/j.resourpol.2014.11.002.
  • 103. Ward, A.J., Lewis, D.M. & Green, B. (2014). Anaerobic digestion of algae biomass: A review, Algal Research-Biomass Biofuels and Bioproducts Journal, 5, pp. 204-214. doi: 10.1016/j.algal. 2014.02.001.
  • 104. WBA (World Bioenegy Association). (2017). Global bioenergy statistics 2017 (http://worldbioenergy.org/uploads/WBA%20GBS%202017_hq.pdf (02.03.2018).
  • 105. Włodarczyk, P.P., Włodarczyk, B. & Kalinichenko, A. (2017). Possibility of direct electricity production from waste canola oil, E3S Web of Conferences, 19 (01019), pp. 1-4. DOI: 10.1051/e3sconf/20171901019.
  • 106. Wongchanapai, S., Iwai, H., Saito, M. & Yoshida, H. (2013). Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system, Journal of Power Sources, 223, pp. 9-17. doi: 10.1016/j.jpowsour.2012.09.037.
  • 107. Wua, B., Zhang, X., Shang, D., Bao, D., Zhang, S. & Zheng, T. (2016). Energetic-environmental-economic assessment of the biogas system with three utilization pathways: Combined heat and power, biomethane and fuel cell, Bioresource Technology, 214, pp. 722-728. doi: 10.1016/j.biortech.2016.05.026.
  • 108. Yan, R., Li, Z., Diao, Y., Fu, C., Wang, H., Li, C., Chen, Q., Zhang, X. & Zhang, S. (2011). Green process for methacrolein separation with ionic liquids in the production of methyl methacrylate, AlChE Journal, 57(9), pp. 2388-2396. doi: 10.1002/aic.12449.
  • 109. Zhang, X., Li, C., Fu, C. & Zhang, S. (2008). Environmental impact assessment of chemical process using the green degree method, Industrial & Engineering Chemistry Research, 47 (4), pp. 1085-1094. doi: 10.1021/ie0705599.
  • 110. Zhang, Y & Colosi, L.M. (2013). What are we missing by focusing on algae biodiesel?, Biofuels, 4(6), pp. 591-593. doi: 10.4155/bfs.13.52.
  • 111. Zuberi, M.J.S. & Fahrioglu, M. (2015). Application of Hubbert Peak theory to stimulate biogas production, International Journal of Renewable Energy Research, 5(1), pp. 61-69. (http://dergipark.gov.tr/download/article-file/148092 (10.02.2018).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89f64a47-45f5-44d0-bae6-f4e699658e47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.