PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on Fretting Fatigue of Tungsten Carbide Coating Based on Strain Energy Density Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The numerical solutions of stress and strain components on the critical plane of tungsten carbide coating were solved based on the critical plane method in three-dimensional coordinate system, and accordingly three strain energy density parameters (Smith-Watson-Topper, Nita-Ogatta-Kuwabara and Chen parameters) were determined to reveal the fretting fatigue characteristics of tungsten carbide coating. In order to predict the fretting fatigue life based on the strain energy density criterion, the expressions between the strain energy density parameter and the fretting fatigue life was obtained experimentally. After the comparison of the three strain energy parameters, it was found that all three parameters could accurately predict the crack initiation position, but only the Smith-Watson-Topper parameters could accurately predict the crack initiation angle. The effects of cyclic load, normal load and friction coefficient on fretting fatigue damage behaviors were discussed by using the Smith-Watson-Topper criterion. The results show that the fretting fatigue life decreases with the increase of cyclic load; an increase in the normal contact load will cause the Smith-Watson-Topper damage parameters more concentrated at the outer edge of the bridge foot; a decrease in the friction coefficient will increase the Smith-Watson-Topper damage parameters in the middle of the contact surface.
Twórcy
autor
  • Tianjin University of Science and Technology, School of Mechanical Engineering, Tianjin 300222, China
  • Tianjin University of Science and Technology, Tianjin Key Laboratory of Integrated Design and Online Monitoring of Light Industry and Food Engineering Machinery and Equipment, Tianjin 300222, China
  • Tianjin University of Science and Technology, School of Mechanical Engineering, Tianjin 300222, China
  • Tianjin University of Science and Technology, Tianjin Key Laboratory of Integrated Design and Online Monitoring of Light Industry and Food Engineering Machinery and Equipment, Tianjin 300222, China
  • Tianjin University of Science and Technology, School of Mechanical Engineering, Tianjin 300222, China
  • Tianjin University of Science and Technology, Tianjin Key Laboratory of Integrated Design and Online Monitoring of Light Industry and Food Engineering Machinery and Equipment, Tianjin 300222, China
autor
  • Tianjin University of Science and Technology, School of Mechanical Engineering, Tianjin 300222, China
  • Tianjin University of Science and Technology, Tianjin Key Laboratory of Integrated Design and Online Monitoring of Light Industry and Food Engineering Machinery and Equipment, Tianjin 300222, China
autor
  • Shanghai Xifa Business Consult ing Co., Ltd., Shanghai 200232, China
Bibliografia
  • [1] R.J.K. Wood, Tribology of thermal sprayed WC-Co coatings, Int. J. Refract. Metals Hard Mater. 28 (1), 82-94 (2010). DOI: https://doi.org/10.1016/j.ijrmhm.2009.07.011
  • [2] G. Bolelli, L.M. Berger, M. Bonetti, L. Lusvarghi, Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC-(W, Cr)2C-Ni and WC-CoCr hardmetal coatings, Wear. 309 (1-2), 96-111 (2014). DOI: https://doi.org/10.1016/j.wear.2013.11.001
  • [3] N. Ma, L. Guo, Z. Cheng, H. Wu, F. Ye, K. Zhang, Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure, Appl. Surf. Sci. 320, 364-371 (2014). DOI: https://doi.org/10.1016/j.apsusc.2014.09.081
  • [4] K. Kubiak, S. Fouvry, A.M. Marechal, J.M. Vernet, Behaviour of shot peening combined with WC-Co HVOF coating under complex fretting wear and fretting fatigue loading conditions, Surf. and Coat. Tech. 201 (7), 4323-4328 (2006). DOI: https://doi.org/10.1016/j.surfcoat.2006.08.094
  • [5] L. Benea, S.B. Başa, E. Dănăilă, N. Caron, O. Raquet, P. Ponthiaux, Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions, Mater. and Des. 65, 550-558 (2015). DOI: https://doi.org/10.1016/j.matdes.2014.09.050
  • [6] H.W. Liu, X.J. Xu, M.H. Zhu, P.D. Ren, Z.R. Zhou, High temperature fretting wear behavior of WC-25Co coatings prepared by D-gun spraying on Ti-Al-Zr titanium alloy, Tribol. Int. 44 (11), 1461-1470 (2011). DOI: https://doi.org/10.1016/j.triboint.2011.01.002
  • [7] J. Luo, Z. Cai, J. Mo, J. Peng, M. Zhu, Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions, Chinese J. of Mech. Eng. 29 (3), 515-521 (2016). DOI: 10.3901/CJME.2016.0307.026
  • [8] J.H. Lee, I.H. Oh, J.H. Jang, S.K. Hong, H.K. Park, Mechanical properties and microstructural evolution of WC-binderless and WC-Co hard materials by the heat treatment process, J. of Alloys and Compd. 786, 1-10 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.01.282
  • [9] C. Hu, D. Wei, Y. Wang, L. Shi, Experimental and numerical study of fretting fatigue in dovetail assembly using a total life prediction model, Eng. Fract. Mech. 205, 301-318 (2019). DOI: https://doi.org/10.1016/j.engfracmech.2018.08.001
  • [10] J. Vázquez, C. Navarro, J. Domínguez, Analysis of fretting fatigue initial crack path in Al7075-T651 using cylindrical contact, Tribol. Int. 108, 87-94 (2017). DOI: https://doi.org/10.1016/j.triboint.2016.09.023
  • [11] A. Nitta, A. Ogata, K. Kuwabara, Fracture mechanisms and life assessment under high-strain biaxial cyclic loading of type 304 stainless, Fatigue Fract. Eng. Mater. Struct. 12 (2), 77-92 (1989). DOI: https://doi.org/10.1111/j.1460-2695.1989.tb00515.x
  • [12] X. Chen, S. Xu, D. Huang, A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life and under nonproportional loading, Fatigue Fract. Eng. Mater. Struct. 22 (8), 679-686 (1999). DOI: https://doi.org/10.1046/j.1460-2695.1999.t01-1-00199.x
  • [13] Richard C. Rice, Fatigue Design Handbook, England 1988.
  • [14] M.G. Yan, China aeronautical materials handbook, China 2001.
  • [15] L. Xu, H. Jing, L. Huo, Young’s modulus and stress intensity factor determination of high velocity electric are sprayed metal-based ceramic coatings, Surf. and Coat. Tech. 201 (6), 2399-2406 (2006). DOI: https://doi.org/10.1016/j.surfcoat.2006.04.021
  • [16] Y. Mutoh, T. Hattori, K. Nagata, Fretting fatigue test method for JSME standard, The Proceedings of JSME Annual Meeting 1, 453-454 (2002).
  • [17] Z. Zhuang, F. Zhang, S. Cen, The nonlinear FEM analysis and examples of ABAQUS, Beijing 2005.
  • [18] R. Gutkin, B. Alfredsson, Growth of fretting fatigue cracks in a shrink-fitted joint subjected to rotating bending, Eng. Fail. Anal. 15, 582-596 (2008). DOI: https://doi.org/10.1016/j.engfailanal.2007.04.003
  • [19] C. Navarro, J. Vázquez, J. Domínguez, Nucleation and early crack path in fretting fatigue, Int. J. Fatigue 100, 602-610 (2008). DOI: https://doi.org/10.1016/j.engfailanal.2007.04.003
  • [20] J. A. Araújo, G.M.J. Almeida, J.L.A. Ferreira, C.R.M. da Silva, F.C. Castro, Early cracking orientation under high stress gradients: the fretting case, Int. J. Fatigue 100, 611-618 (2017). DOI: https://doi.org/10.1016/j.engfailanal.2007.04.003
Uwagi
1. The authors acknowledge the support of National Natural Science Foundation of China under grant No. 51975411, the Natural Science Foundation of Tianjin, China under grant No. 18JCYBJC88500, and the Tianjin Postgraduate Scientific Research Innovation Project under grant No. 2020YJSB072
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89f42432-330b-4f81-b871-d84213e12f8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.