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Abstract: In this paper, an integral finite-time sliding mode control scheme is presented 
for controlling a chaotic permanent magnet synchronous motor (PMSM). The controller 
can stabilize the system output tracking error to zero in a finite time. Using Lyapunov’s 
stability theory, the stability of the proposed scheme is verified. Numerical simulation 
results are presented to present the effectiveness of the proposed approach. 
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1. Introduction 
 
 A permanent magnet synchronous motor (PMSM) plays an important role in industrial ap-
plications due to its simple structure, high power density, low maintenance cost, and high ef-
ficiency [1-4]. However, investigations show that PMSM displays chaotic behavior when mo-
tor parameters lie in a certain range [3, 4]. Chaos in PMSM, which decreases the system per-
formance, is highly undesirable in most engineering applications. 
 Several researchers have investigated the problem of control chaos in PMSM [5-16]. De-
coupling control [5], entrainment and migration control [6], optimal Lyapunov exponents 
placement [7], sensorless control [8-10], time delay feedback control [11], feedback control 
[12], backstepping control [13], passivity control [14], sliding mode control [15], and fuzzy 
control [16, 17]. During the last three decades, variable structure systems (VSS) and sliding 
mode control (SMC) have received significant interest and have become well-established re-
search areas with great potential for practical applications. The theoretical development 
aspects of SMC are well documented in many books and articles [7, 16, 20, 25, 27, 29, 31]. 
 The principle of the sliding mode control is to forcibly constrain the system [18, 19, 21], 
by suitable control strategy, to stay on the sliding surface on which the system will exhibit 
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desirable features [24, 26, 28]. The advantages of SMC are robustness, computation speed, 
compact implementation, controller order reduction, disturbance rejection, and insensitivity to 
parameter variations. The main disadvantage of the SMC strategy is the chattering phenome-
non. SMC has been applied in many control fields which include robot control [30], motor 
control [5, 22], flight control [23], control of power systems [9, 30, 32, 33], and chemical 
process control [4]. 
 In this paper, an integral sliding mode control law is designed to achieve the finite-time 
chaos suppression for the permanent magnet synchronous motor system. The finite-time sta-
bility of the closed-loop system is proved using the Lyapunov theory.  
 This article is organized as follows: the dynamic model of PMSM is presented in Sec- 
tion 2; this model is normalized so that PMSM exhibits chaotic behavior under certain 
conditions. Section 3 describes in detail the proposed approach design and verifies the stability 
of the controller according to Lyapunov stability. Effectiveness of the proposed schemes is 
demonstrated by simulation in Section 4. Finally, the conclusion is given in Section 5. 
 
 

2. Modeling of permanent-magnet synchronous motor (PMSM) 
 
 The mathematical model of PMSM [3] is given by: 
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where qi , di  and qd uu , are three d-axis and q-axis stator currents and voltage dq LL ,  are 
q-axis stator inductances, R  corresponds to the stator resistor. J  is the polar moment of 
inertia; β  is the viscous friction constant, rψ  is the rotor magnetic flux linking the stator and 

pn  is the number of pole-pairs, LΤ  represents the external load torque and ω  corresponds to 
the rotor angular velocity. 
 By employing an affine transformation ( ) ( ).λ. 1−=  and a time-scaling transformation,  
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 Then system (1) can be transformed to the following form, which is more suited for 
control-design purpose: 

Brought to you by | Uniwersytetu Technologicznego w Szczecinie - Biblioteka Glówna Zachodniopomorskiego
Authenticated

Download Date | 6/13/17 3:50 PM



Vol.  66 (2017)          Finite-time integral sliding mode control for chaotic PMSM systems 231 

  

( )

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

++−=

++−−=

−−=

,ω
d
d

,ωγω
d
d

,ωσ
d
ωd

dqd
d

qdq
q

Lq

uii
t
i

uii
t
i

i
t

Τ

 (2) 

where ω  is the angle speed, qi and di  denote the quadrature and the direct-axis currents of the 
motor, respectively σ  and γ  are the system parameters, LΤ  is the load torque, qu and du  are 
the quadrature and direct-axis stator voltage components, respectively. In our paper, we only 
take the case 0== dq uu  then, system (2) becomes: 
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Fig. 1 and Fig. 2 illustrate the typical chaotic attractor’s behavior of PMSM for a certain range 
of its parameters. In our paper we choose the case of ( ) ( )20,45.5γσ, =  and initial condition. 

( ) 5.00ω = , ( ) 6.00 =qi , ( ) 5.00 =di . 

  
Fig. 1. Characterizations of chaos in PMSM: (a) chaotic attractor; (b) lyapunov exponent 

 

3. Integral terminal sliding mode control for PMSM 
 Consider a nonlinear system as follows: 

  ( ) ( ) ,uxgxfx +=&  (4) 

where Rx ∈ , ( ) Rxf ∈ , ( ) Rxg ∈  and ( ) Rxg ∈≠− 01 . 
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Fig. 2. Time response of the state 
of  PMSM  for  two  initial  condi- 
tions (0.5, 0.6, 0.5)-(0.1, 0.1, 0.1) 

 
 Let us introduce a sliding variable: 

   1θxxS += , (5) 

  ( )xx sgn1 =&  with ( )
θ

)0(01
xx −= , where 0θ > . 

 According to [20], x  will be always kept on S. If we guarantee that the surface S  is 
always zero then x will converge to zero in a finite time. 
 Let ),,ω( r

d
r
q

r ii  denotes an equilibrium point ),,ω( r
d

r
q

r ii . The aim of this paper is to design 
a controller that stabilizes the system (3) to the equilibrium point and guarantees chaos sup-
pression. We add the single control u(t) to system (3) and then the controlled PMSM system 
can be expressed by: 
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 Let the error states of system be: 

 ,ωω1 −= re  q
r
q iie −=2  and .3 d

r
d iie −=  

 Then dynamical system can be expressed as: 
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 A suitable sliding surface can be chosen as: 

  ,θ 22 IeeS +=  (8) 

 ( )22 sgn ee I =&  with ( ) ( )
θ
00 2

2
ee I −= . 

 If 2e  reaches S  it will converge to zero in a finite time 
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θ
02e
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 The time derivative of S  is 

  .)(sgnθ 22 eeS += &&  (9) 

 By letting 0=S , one can get the equivalent control as: 

  ( ).sgnθγω 2121331 eeeeieeeu deq −−+++=  (10) 

 The reaching control is selected as follows: 

  ( ),sgnμ Surech −=  (11) 

where 0μ >  is a positive number. 
 The sliding mode controller law is designed as: 

  .recheq uuu +=  (12) 

Theorem 
 Consider dynamic error system (7).The integral sliding mode controller (12) yields con-
vergence of 2e and 2e&  to 0 in a finite time, and the errors 1e  and 3e  are globally asymptoti-
cally stable at (0, 0). 

Proof 
 Let the Lyapunov function ( )SV  be defined by: 

  ( ) .
2
1 2SSV =  (13) 

 The time derivative of this function with respect to time along (7): 

  ( ) ,SSSV && =  (14) 

  ( ) ( ) ( )( ).sgnθγω 2121331 ueeeeieeeSSV d +++−++−=&  (15) 

 Substituting (12) into (15) gives: 

  ( ) .μ SSV −=&  (16) 

 According to the sliding condition [20], 2e  and 2e&  converge to zero in a finite time. After 
2e  has converged to 0, the dynamical errors 1e  and 3e can be written as: 

Brought to you by | Uniwersytetu Technologicznego w Szczecinie - Biblioteka Glówna Zachodniopomorskiego
Authenticated

Download Date | 6/13/17 3:50 PM



                           A. Chibani, B. Daaou, A. Gouichiche, A. Safa, Y. Messlem                         Arch. Elect. Eng. 234

  
⎪⎩

⎪
⎨
⎧

−=

−=

.

,σ

313

11

eeie

ee

q&

&
 (17) 

 If the candidate Lyapunov function is defined as: 
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then the time derivative of ( )eV  is: 
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4. Simulation results 
 
 Simulations, using MATLAB Software Package, are carried out to verify the effectiveness 
of the proposed method. The parametric values of PMSM are the same as those in Section 3. 
Without loss of generality, we select ( ) ( )0,0,0,,ω =r

d
r
q

r ii  as the desired equilibrium point. 
The control method takes effect after t = 4.5 s. Fig. 3 shows the dynamic error system states of 
PMSM and the manipulated signals u.  
 From the results, it can be seen that the proposed integral sliding mode controller structure 
shows good performance in achieving the output regulation. 
 Next, we examine the robustness of the proposed controllers in the presence of the model 
uncertainty and external disturbances. Fig. 4 shows the performances of controllers for 40% 
increase in the parameters and external disturbance were added to PMSM: omiga 1 = 

),3.0(cos2.0 t=  )4.0(cos3.02 tomiga = , )6.0(cos6.03 tomiga = . Therefore, it can be con-
cluded that the proposed control schemes are robust to changes in the parameters and to 
disturbances acting on the system. 
 Finally, we examine the robustness of the proposed controllers in the presence of the 
measurement noise. In this case, white Gaussian noises with variances of 3% are simul-
taneously added to the outputs measurements. The system transient’s responses for the con-
troller and the control action are shown in Fig. 5.  
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a) b) 

 
c) d) 

 

e) 

 
Fig. 3. System responses with the control in action at t = 4.5 s: (a) speed; (b) q-axis current; (c) d-axis 

current; (d) control input; (e) tracking error 
 
 It can be seen that the set-point tracking behavior is very satisfactory. Note that the pro-
posed controller maintains the PMSM state in a small neighborhood of the desired value de-
spite the noise on the measurement. 
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a) b) 

 
 

c) 

 

 
d)  

 
 

 
e) 

 
Fig. 4. System responses in the presence of the model uncertainty and external disturbances with the 
control in action at t = 4.5 s: (a) speed; (b) q-axis current; (c) d-axis current; (d) control input; (e) tracking 

ing error 
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a) b) 

 
 

c) 
 

d) 

 

 

e) 

 
Fig. 5. System responses with the presence of the white noise with the control in action at t = 4.5 s: 

(a) speed; (b) q-axis current; (c) d-axis current; (d) control input; (e) tracking error 

Control in action  
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5. Conclusion 
 
 In this paper, we presented an integral finite-time sliding mode control scheme for a per-
manent-magnet synchronous motor. The closed-loop stability is proved. Through numerical 
simulations, we illustrated the feasibility of the designed control system. Moreover, the pro-
posed control exhibits a satisfactory performance when used with disturbance and dynamics 
uncertainty. 
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