PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Global Geodetic Observing System 2015–2018

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global Geodetic Observing System (GGOS) was established in 2003 by the International Association of Geodesy (IAG) with the main goal to deepen understanding of the dynamic Earth system by quantifying human-induced Earth’s changes in space and time. GGOS allows not only for advancing Earth Science, including solid Earth, oceans, ice, atmosphere, but also for better understanding processes between different constituents forming the system Earth, and most importantly, for helping authorities to make intelligent societal decisions. GGOS comprises different components to provide the geodetic infrastructure necessary for monitoring the Earth system and global changes. The infrastructure spreads from the global scale, through regional, to national scales. This contribution describes the GGOS structure, components, and goals with the main focus on GGOS activities in Poland, including both the development of the geodetic observing infrastructure as well as advances in processing geodetic observations supporting GGOS goals and providing high-accuracy global geodetic parameters.
Rocznik
Strony
121--144
Opis fizyczny
Bibliogr. 64 poz., fot., rys., tab., wykr.
Twórcy
  • Wroclaw University of Environmental and Life Sciences Institute of Geodesy and Geoinformatics 53 Grunwaldzka, 50-357 Wroclaw, Poland
  • Wroclaw University of Environmental and Life Sciences Institute of Geodesy and Geoinformatics 53 Grunwaldzka, 50-357 Wroclaw, Poland
Bibliografia
  • [1] Altamimi, Z., Rebischung, P., Métivier, L. and Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res.: Solid Earth, 121(8), 6109–6131. DOI: 10.1002/2016JB013098.
  • [2] Appleby, G., Rodrguez, J. and Altamimi, Z. (2016). Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors In LAGEOS observations. J. Geod., 90(12), 1371–1388. DOI: 10.1007/s00190-016-0929-2.
  • [3] Arnold, D., Montenbruck, O., Hackel, S. and So´snica, K. (2019). Satellite laser ranging to low Earth orbiters: orbit and network validation. J. Geod. DOI: 10.1007/s00190-018-1140-4.
  • [4] Arnold, D., Meindl, M., Beutler, G., Dach, R., Schaer, S., Lutz, S., Prange, L., So´snica, K., Mervart, L. and Jaggi, A., (2015). CODE’s new solar radiation pressure model for GNSS orbit determination. J. Geod., 89(8), 775–791. DOI: 10.1007/s00190-015-0814-4.
  • [5] Bloßfeld, M., Jäggi, A., Kehm, A., Meyer, U. and So´snica, K. (2018). Evaluating the potential of combined SLR gravity field solutions. In: 21 ILRS Workshop on Laser Ranging. Canberra, 5–9 November 2018.
  • [6] Bizouard, C., Lambert, S., Gattano, C., Becker, O. and Richard, J.Y. (2018). The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J. Geod., 1–13. DOI: 10.1007/s00190-018-1186-3.
  • [7] Bosy, J. (2014). Global, regional and national geodetic reference frames for geodesy and geodynamics. Pure Appl. Geophys., 171(6), 783–808. DOI: 10.1007/s00024-013-0676-8.
  • [8] Bury, G., Sosnica, K. and Zajdel, R. (2018). Multi-GNSS orbit determination using satellite laser ranging. J. Geod. DOI: 10.1007/s00190-018-1143-1.
  • [9] Bury, G., Sosnica, K. and Zajdel, R. (2019a). Impact of the atmospheric non-tidal pressure loading on global geodetic parameters based on Satellite Laser Ranging to GNSS. IEEE Trans. Geosci. Remote Sens. DOI: 10.1109/TGRS.2018.2885845.
  • [10] Bury, G., Zajdel, R. and Sosnica, K., (2019b). Accounting for perturbing forces acting on Galileo using a box-wing model. GPS Solut. (in review).
  • [11] Ciufolini, I. and Pavlis, E. C. (2004). A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature, 431(7011), 958–960. DOI: 10.1038/nature03007.
  • [12] Dach, R., Montenbruck, O., Ziebart, M., Sosnica, K., Prange, L., Sidorov, D. and Schildknecht, T. (2018). Tracking of GNSS satellites –usage in the GNSS community. In: 21 ILRS Workshop on Laser Ranging. Canberra, 5–9 November 2018.
  • [13] Dow, J.M., Neilan, R.E. and Rizos, C. (2009). The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod., 83(3), 191–198. DOI: 10.1007/s00190-008-0300-3.
  • [14] Drozdzewski, M. and Sosnica, K. (2018). Satellite laser ranging as a tool for the recovery of tropospheric gradients. Atmos. Res., 212, 33–42. DOI: 10.1016/j.atmosres.2018.04.028.
  • [15] Godah, W., Szelachowska, M. and Krynski, J. (2017). On the analysis of temporal geoid height variations obtained from GRACE-based GGMs over the area of Poland. Acta Geophys., 65(4), 713–725. DOI:10.1007/s11600-017-0064-3.
  • [16] Gross, R., Beutler, G. and Plag, H.P. (2009). Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Plag, H.P., Pearlman, M. (Eds.) Global Geodetic Observing System. Springer, Berlin, Heidelberg.
  • [17] Gross, R. (2018). GGOS and Essential Geodetic Variables. In: 21 ILRS Workshop on Laser Ranging. Canberra, 5–9 November 2018.
  • [18] Hadas, T., Krypiak-Gregorczyk, A., Hernández-Pajares, M., Kapłon, J., Paziewski, J., Wielgosz, P., Garcia-Rigo, A., Kazmierski, K., Sosnica, K., Kwasniak, D., Sierny, J., Bosy, J., Puciłowski, M., Szyszko, R., Portasiak, K., Olivares-Pulido, G., Gulyaeva, T. and Orus-Perez, R. (2017a). Impast and Implementation of Higher-Order Ionospheric Effects on Precise GNSS Applications. J. Geophys. Res.: Solid Earth, 122(11), 9420–9436. DOI: 10.1002/2017JB014750.
  • [19] Hadas, T., Teferle, F.N., Kazmierski, K., Hordyniec, P. and Bosy, J. (2017b). Optimum stochastic modeling for GNSS tropospheric delay estimation in real-time. GPS Solut., 21(3), 1069–1081. DOI: 10.1007/s10291-016-0595-0.
  • [20] Hellerschmied, A., McCallum, L., McCallum, J., Sun, J., Böhm, J. and Cao, J. (2018). Observing APOD with the AuScope VLBI Array. Sensors, 18(5), 1587. DOI: 10.3390/s18051587.
  • [21] Hernández-Pajares, M., Wielgosz, P., Paziewski, J., Krypiak-Gregorczyk, A., Krukowska, M., Stepniak, K., Kapłon, J., Hadas, T., Sosnica, K., Bosy, J., Orus-Perez, R., Monte-Moreno, E., Yang, H., Garcia-Rigo, A. and Olivares-Pulido, G. (2017). Direct MSTID mitigation in precise GPS processing. Radio Sci., 52(3), 321–337. DOI: 10.1002/2016RS006159.
  • [22] Jagoda, M., Rutkowska, M., Kraszewska, K. and Suchocki, C. (2018). Time changes of the potential Love tidal parameters k2 and k3. Stud. Geophys. Geod., 62(4), 586–595. DOI: 10.1007s11200-018-0610-8.
  • [23] Jagoda, M. (2019). Influence of use of different values of tidal parameters h2, l2 on determination of coordinates of SLR stations. Stud. Geophys. Geod., 1–12. DOI: 10.1007/s11200-018-1174-3.
  • [24] Jäggi, A., Meyer, U., Jean, Y., Flechtner, F., Mayer-Gürr, T. and Lemoine, J.-M. (2018). Combination Sernice for Time-Variable Gravity Field Solutions (COST-G): Transition from an EGSIEM prototype service into a product center of the IGFS. In 42. COSPAR Scientific Assembly, Pasadena, CA, USA, 14–22 July, 2018.
  • [25] Kalarus, M., Wielgosz, A., Liwosz, T., Sosnica, K. and Zielinski, J. (2016). Possible advantages of equipping the GNSS satellites with on-board accelerometers. In Proceedings of the IAG commission 4 positioning and applications symposium, Wroclaw, Poland, September 4–7, 2016.
  • [26] Katsigianni, G., Loyer, S., Perosanz, F., Mercier, F., Zajdel, R. and Sosnica, K. (2019). Improving Galileo orbit determination using zero-difference ambiguity fixing in a Multi-GNSS processing. Adv. Space Res. DOI: 10.1016/j.asr.2018.08.035.
  • [27] Kazmierski, K., Sosnica, K. and Hadas, T. (2018a). Quality assessment of multi-GNSS orbits and clocks for real-time Precise Point Positioning. GPS Solut., 22:11. DOI: 10.1007/s10291-017-0678-6.
  • [28] Kazmierski, K., Hadas, T. and Sosnica, K. (2018b).Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning. Remote Sens., 10(84), 1–15. DOI: 10.3390/rs10010084.
  • [29] Kazmierski, K. (2018c). Performance of Absolute Real-Time Multi-GNSS Kinematic Positioning. Artificial Satellites. Journal of Planetary Geodesy, 53(2), 75–88. DOI: 10.2478/arsa-2018-0007.
  • [30] Kucharski, D., Kirchner, G., Bennett, J.C., Lachut, M., Sosnica, K., Koshkin, N., Shakun, L., Koidl, F., Steindorfer, M., Wang, P. et al. (2017). Photon pressure force on space debris TOPEX/Poseidon measured by Satellite Laser Ranging. Earth Space Sci., 4(10), 661–668. DOI: 10.1002/2017EA000329.
  • [31] Kuczynska-Siehien, J., Lyszkowicz, A. and Birylo, M. (2016). Geoid determination for the area of Poland by the least squares modification of Stokes’ formula. Acta Geodyn. Geomater., 13(1), 19–26. DOI: 10.13168/AGG.2015.0041.
  • [32] Lejba, P., Suchodolski, T., Michałek, P., Bartoszak, J., Schillak, S. and Zapasnik, S. (2018a). First laser measurements to space debris in Poland. Adv. Space Res., 61(10), 2609–2616. DOI: 10.1016/j.asr.2018.02.033.
  • [33] Lejba, P., Suchodolski, T., Michałek, P., Bartoszak, J., Zapa´snik, S. and Schillak, S. (2018b). Laser activity of the Borowiec laser station in years 2017–2018. In: 21 ILRS Workshop on Laser Ranging. Canberra, 5–9 November 2018.
  • [34] Lucchesi, D. M., Santoli, F., Peron, R., Fiorenza, E., Lefevre, C., Lucente, M., Kalarus M. and Zielinski, J. (2016). Non-gravitational accelerations measurements by means of an on-board accelerometer for the Second Generation Galileo Global Navigation Satellite System. In: Metrology for Aerospace (MetroAeroSpace), 2016 IEEE, 423–433. DOI: 10.1109/MetroAeroSpace.2016.7573253.
  • [35] Männel, B. (2016). Co-location of Geodetic Observation Techniques in Space. Geodätisch-geophysikalische Arbeiten in der Schweiz, 97, SGC ETH Zürich, Switzerland. ISBN 978-3-908440-43-7.
  • [36] Meyer, U., Sosnica, K, Andritsch, F., Dach, R., Jäggi, A., König, D. and Thaller, D. (2018). SLR, GRACE and SWARMgravity field determination and combination. In: 21 ILRSWorkshop on Laser Ranging. Canberra, 5–9 November 2018.
  • [37] Montenbruck, O., Steigenberger, P., Prange, L., et al. (2017). The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) – Achievements, prospects and challenges. Adv. Space Res., 59(7), 1671–1697. DOI: 10.1016/J.ASR.2017.01.011.
  • [38] Osada, E., Sosnica, K., Borkowski, A., Owczarek-Wesołowska, M. and Gromczak, A. (2017a). A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models. Sensors, 17(7), 1489. DOI: 10.3390/s17071489.
  • [39] Osada, E., Owczarek-Wesołowska, M., Ficner, M. and Kurpi´nski, G. (2017b). TotalStation/GNSS/EGM integrated geocentric positioning method. Surv. Rev., 49(354), 206–211. DOI: 10.1080/00396265.2016.1151969.
  • [40] Otsubo, T., Müller, H., Pavlis, E.C., Torrence, M.H., Thaller, D., Glotov, V.D., Wang, X., Sosnica, K., Meyer, U. and Wilkinson, M.J. (2019). Rapid response quality control service for the laser ranging tracking network. J. Geod. DOI:10.1007/s00190-018-1197-0.
  • [41] Paziewski, J., Sieradzki, R. and Wielgosz, P. (2018). On the Applicability of Galileo FOC Satellites with Incorrect Highly Eccentric Orbits: An Evaluation of Instantaneous Medium-Range Positioning. Remote Sens., 10(2), 208. DOI: 10.3390/rs10020208.
  • [42] Pearlman, M., Degnan, J. and Bosworth, J. (2002). The International Laser Ranging Service. Adv. Space Res., 30(2), 135–143. DOI: 10.1016/S0273-1177(02)00277-6.
  • [43] Pearlman, M., Arnold, D., Davis, M., Barlier, F., Biancale, R., Vasiliev, V., Ciufolini, I., Paolozzi, A., Pavlis, E., Sosnica, K. and Bloßfeld, M. (2019). Laser geodetic satellites: a high accuracy scientific tool. J. Geod. DOI: 10.1007%2Fs00190-019-01228-y.
  • [44] Plag, H.P. and Pearlman, M. (2009). Global Geodetic Observing System, Meeting the Requirements of a Global Society on a Changing Planet in 2020. Springer-Verlag Berlin Heidelberg, 2nd edition. DOI: 10.1007/978-3-642-02687-4.
  • [45] Rothacher, M. (2003). The Special Role of SLR for Inter-Technique Combinations. In: ILRS Workshop 2003, October 28–31, 2003, Bad Koetzing, Germany.
  • [46] Schillak, S., Lejba, P. and Michałek, P. (2018). Determination of the coordinates of SLR stations from the LARES satellite. In: 21 ILRS Workshop on Laser Ranging. Canberra, 5-9 November 2018.
  • [47] Schlüter, W. and Behrend, D. (2007). The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J. Geod., 81(6-8), 379–387. DOI: 10.1007/s00190-006-0131-z.
  • [48] Sosnica, K., Jäggi, A., Meyer, U., Thaller, D., Beutler, G., Arnold, D. and Dach, R. (2015a). Time variable Earth’s gravity field from SLR satellites. J. Geod., 89(10), 945–960. DOI: 10.1007/s00190-015-0825-1.
  • [49] Sosnica, K. (2015b). Determination of precise satellite orbits and geodetic parameters using satellite laser ranging. Geodätisch-geophysikalische Arbeiten in der Schweiz, 93, SGC ETH Zürich, Switzerland, ISBN 978-3-908440-38-3.
  • [50] Sosnica, K., Thaller, D., Dach, R., Steigenberger, P., Beutler, G., Arnold, D. and Jäggi, A. (2015c). Satellite laser ranging to GPS and GLONASS. J. Geod., 89(7), 725–743. DOI: 10.1007/s00190-015-0810-8.
  • [51] Sosnica, K., Bury, G. and Zajdel, R. (2018a). Contribution of Multi-GNSS Constellation to SLRDerived Terrestrial Reference Frame. Geophys. Res. Lett., 45(5), 2339–2348. DOI: 10.1002/2017GL076850J.
  • [52] Sosnica, K., Prange, L., Kazmierski, K., Bury, G., Drozdzewski, M., Zajdel, R. and Hadas, T. (2018b). Validation of Galileo orbits using SLR with a focus on satellites launched into incorrect orbital plane. J. Geod., 92(2), 131–148. DOI: 10.1007/s00190-017-1050-x.
  • [53] Sosnica, K., Rohm, W., Bosy, J., Zajdel, R., Hadas, T., Kapłon, J., Kudlacik, I., Pawluszek, K., Sierny, J., Ilieva, M., Borkowski, A., Krynski, J., Dykowski, P., Mutke, G., Kotyrba, A. and Olszewska, D. (2018c). Monitoring of Earth surface displacements using integrated multi-GNSS, gravity, seismic, and InSAR data in the framework of GGOS-PL++. In: 42. COSPAR Scientific Assembly, Pasadena, CA, USA, 14–22 July, 2018.
  • [54] Strugarek, D., Sosnica, K. and Jaeggi, A. (2019). Characteristics of GOCE orbits based on Satellite Laser Ranging. Adv. Space Res., 63(1), 417–431. DOI: 10.1016/j.asr.2018.08.033.
  • [55] Tercjak, M. and Brzezinski, A. (2017). On the Influence of Known Diurnal and Subdiurnal Signals in Polar Motion and UT1 on Ring Laser Gyroscope Observations. Pure Appl. Geophys., 174(7), 2719–2731. DOI: 10.1007/s00024-017-1552-8.
  • [56] Trojanowicz, M., Osada, E. and Karsznia, K. (2018). Precise local quasigeoid modelling using GNSS/levelling height anomalies and gravity data. Surv. Rev., 1–8. DOI: 10.1080/00396265.2018.1525981.
  • [57] Wielgosz, A., Tercjak, M. and Brzezinski, A. (2016). Testing impact of the strategy of VLBI data analysis on the estimation of Earth Orientation Parameters and station coordinates. Reports on Geodesy and Geoinformatics, 101(1), 1–15. DOI: 10.1515/rgg-2016-0017.
  • [58] Willis, P., Fagard, H., Ferrage, P., Lemoine, F.G., Noll, C.E., Noomen, R. and Tavernier, G. (2010). The international DORIS service (IDS): toward maturity. Adv. Space Res., 45(12), 1408–1420. DOI: 10.1016/j.asr.2009.11.018.
  • [59] Winska, M., Nastula, J. and Salstein, D. (2017). Hydrological excitation of polar motion by different variables from the GLDAS models. J. Geod., 91(12), 1461–1473. DOI: 10.1007/s00190-017-1036-8.
  • [60] Winska, M. and Sliwinska, J. (2018). Assessing hydrological signal in polar motion from observations and geophysical models. Stud. Geophys. Geod., 1–24. DOI: 10.1007/s11200-018-1028-z.
  • [61] Zajdel, R., Sosnica, K. and Bury, G. (2017). A New Online Service for the Validation of Multi-GNSS Orbits Using SLR. Remote Sens., 9(10), 1049. DOI: 10.3390/rs9101049.
  • [62] Zajdel, R., Sosnica, K., Dach, R., Bury, G., Prange, L. and Jaeggi, A. (2019). Network effects and handling of the geocenter motion in multi-GNSS processing. J. Geophys. Res. (in review).
  • [63] Zielinski, J. (2015). Pure gravitational orbits of GNSS – The tool for the relativistic space geodesy. In: Metrology for Aerospace (MetroAeroSpace), 2015 IEEE. DOI: 10.1109/MetroAeroSpace.2015. 7180644.
  • [64] Zielinski, J. and Wielgosz, A. (2018). High Precision GNSS – Prospects for Science and Applications. In: Cefalo R., Zielinski J., Barbarella M. (Eds.), New Advanced GNSS and 3D Spatial Techniques. Lecture Notes in Geoinformation and Cartography. Springer, Cham.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89e6d569-5500-43c0-a454-a753435b43eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.