PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fate of engineered nanoparticles in wastewater treatment plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Losy projektowanych nanocząstek w oczyszczalni ścieków
Języki publikacji
EN
Abstrakty
EN
A nanomaterial has at least one dimension in the nanometre scale of approximately 1 to 100 nm. Because of their very small size, nanostructures have different physicochemical properties, compared to the same materials on the macro scale. Engineered nanoparticles (ENPs) are deliberately produced by man using many different materials, such as metals: Ag, Zn, Au, Ni, Fe, and Cu; metal oxides: TiO2, Fe3O4, SiO2, CeO2, and Al2O3; nonmetals: silica and quantum dots; carbon: nanotubes and fullerene as well as graphene. The nanoparticles are used in all industrial and medicine, pharmacy, cosmetics, agriculture, transport, energy. Fast-growing nanotechnology provides a wide spectrum of applications, but it also brings new and unknown risks to human and environment. In recent years, the environmental release of ENPs has been on the rise because of increase of NPs in commercial products. Moreover, the fate of NPs in wastewater treatment processes may play an important role in determining the pathway their environmental release. The nanoparticles in wastewater treatment plants will experience aggregation, sedimentation, transformation which may affect their concentration in effluents, but also in the sludge. The most laboratory studies focused on fate of nanoparticles in activated sludge process were carried out with SBR reactors with addition of Ag, ZnO, CeO2 and TiO2 nanoparticles. Bacteria in biological treatment processes are likely be exposed to nanoparticles that have undergone agglomeration and transformation. These nanoparticles could agglomerate or even get adsorbed to the extracellular polymers during primary and secondary treatment eventually ending up in wastewater sludge. Hence, the fate of engineered nanoparticles during wastewater treatment process should be investigated to help reduce the risk of their potential negative environmental effects. In the article reviews of the recent results in the literature concerning transformation of engineered nanoparticles during treatment process have been shown.
PL
Nanomateriał zawiera co najmniej jeden wymiar w skali nano w przybliżeniu od 1 do 100 nm. Ze względu na małe wymiary nanomateriały wykazują odmienne właściwości fizykochemiczne w stosunku do tych samych materiałów w makroskali. Projektowane nanocząstki (ENPs) są celowo wytwarzane przez człowieka przy użyciu wielu różnych materiałów, tj.: metali: Ag, Zn, Au, Ni, Fe i Cu; tlenków metali: TiO2, Fe3O4, SiO2, CeO2 i Al2O3; niemetali: krzemionka i kropki kwantowe; węgla: nanorurki i fulereny. Nanocząstki wykorzystywane są w medycynie, farmacji, kosmetyce, rolnictwie, transporcie i energetyce. Szybko rosnące spektrum zastosowania nanotechnologii przynosi nowe i nieznane zagrożenia dla człowieka i środowiska. Ze względu na zwiększone wykorzystanie ENPs w produktach komercyjnych wzrasta uwolnienie projektowanych nanocząstek do środowiska. Poza tym przemiany ENPs w procesach oczyszczania ścieków mogą odgrywać ważną rolę w przedostawaniu się ich do środowiska naturalnego. Nanocząstki w oczyszczalniach ścieków ulegają agregacji, sedymentacji czy transformacji, co może wpływać na ich stężenie w ściekach, ale także w osadach. Badania nad wpływem i transformacją nanocząstek w osadzie czynnym prowadzano najczęściej w laboratoryjnych reaktorach porcjowych SBR. Najwięcej badań przeprowadzono na nanocząstkach Ag, a następnie ZnO, CeO2 i TiO2. Jak wykazują liczne badania, bakterie w biologicznych procesach oczyszczania mogą być narażone na działanie nanocząstek, które ulegają zarówno aglomeracji, jak i transformacji. W dostępnej literaturze podkreśla się, że te aglomeraty nanocząstek mogą zostać zaadsorbowane na zewnątrzkomórkowych polimerach podczas oczyszczania ścieków, a następnie przedostać się do osadu. Dlatego też drogi przemian nanocząstek w trakcie procesu oczyszczania ścieków powinny być intensywnie badane przede wszystkim w celu ograniczenia ryzyka ich potencjalnego negatywnego wpływu na środowisko. W artykule przedstawiono przegląd literaturowy dotyczący badań nad transformacją inżynieryjnych nanocząstek w procesie oczyszczania ścieków.
Rocznik
Strony
577--587
Opis fizyczny
Bibliogr. 40 poz., il. kolor., 1 wykr.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Institute of Environmental Engineering, ul. Brzeźnicka 60a, 42-200 Częstochowa
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Institute of Environmental Engineering, ul. Brzeźnicka 60a, 42-200 Częstochowa
autor
  • Czestochowa University of Technology, Faculty of Infrastructure and Environment, Institute of Environmental Engineering, ul. Brzeźnicka 60a, 42-200 Częstochowa
Bibliografia
  • [1] Murr L.E., Esquivel E.V., Bang J.J., De la Rosa G., Gardea-Torresdey J.L., Chemistry and nanoparticulate compositions of a 10 000 year-old ice core melt water, Water Research 2004, 38, 4282-4296.
  • [2] Verma H.C., Upadhyaya C., Tripathi A., Tripathi R.P., Bhandari N., Thermal decomposition pattern and particle size estimation of iron minerals associated with the cretaceous-tertiary boundary at Gubbio, Meteorit, Planet Sci. 2002, 37, 901-909.
  • [3] Handy R.D., Owen R., Valsami-Jones E., The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs, Ecotoxicology 2008, 17, 315-325.
  • [4] Nanosafety in Europe 2015-2025: Towards Safe and Sustainable Nanomaterials and Nanotechnology Innovations.
  • [5] Buzea C., Pacheco I.I., Robbie K., Nanomaterials and nanoparticles: sources and toxicity, Biointerphases 2007, 2, 4, MR17-MR71.
  • [6] Bystrzejewska-Piotrowska G., Golimowski J., Urban P.L., Nanoparticles: their potential toxicity, waste and environmental management, Waste Management 2009, 29, 9, 2587-2595.
  • [7] Pokropivny V.V., Skorokhod V.V., Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science, Materials Science and Engineering 2007, C, 27, 5, 990-993.
  • [8] Bhatt I., Tripathi B.N., Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment, Chemosphere 2011, 82, 3, 308-317.
  • [9] Vance M.E., Kuiken T., Vejerano E.P., McGinnis S.P., Hochella Jr M.F., Rejeski D., Hull M.S., Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory, Beilstein Journal of Nanotechnology 2015, 6, 1769-1780.
  • [10] Madeła M., Neczaj E., Worwąg M., Grosser A., Environmental hazards of nanoparticles, Chemical Industry 2015, 94, 2138-2141 (In Polish).
  • [11] Sajid M., Ilyas M., Basheer C., Tariq M., Daud M., Baig N., Shehzad F., Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects, Environmental Science and Pollution Research 2015, 22, 6, 4122-4143.
  • [12] Yah C.S., Simate G.S., Iyuke S.E., Nanoparticles toxicity and their routes of exposures, Pakistan Journal of Pharmaceutical Sciences 2012, 25, 2.
  • [13] Bae E., Park H.J., Lee J., Kim Y., Yoon J., Park K., Yi J., Bacterial cytotoxicity of the silver nanoparticle related to physicochemical metrics and agglomeration properties, Environmental Toxicology and Chemistry 2010, 29, 10, 2154-2160.
  • [14] Jośko I., Oleszczuk P., Manufactured nanomaterials: the connection between environmental fate and toxicity, Critical Reviews in Environmental Science and Technology 2013, 43(23), 2581-2616.
  • [15] Langauer-Lewowicka H., Pawlas K., Nanoparticles, nanotechnology - potential environmental and occupational hazards, Environmental Medicine 2014, 17, 2, 7-14 In polish.
  • [16] Brar S.K., Verma M., Tyagi R.D., Surampalli R.Y., Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts, Waste Management 2010, 30, 3, 504-520.
  • [17] Ma-Hock L., Gamer A.O., Landsiedel R., Leibold E., Frechen T., Sens B., Van Ravenzwaay B., Generation and characterization of test atmospheres with nanomaterials, Inhalation Toxicology 2007, 19, 10, 833-848.
  • [18] Kaegi R., Voegelin A., Sinnet B., Zuleeg S., Hagendorfer H., Burkhardt M., Siegrist H., Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant, Environmental Science & Technology 2011, 45, 9, 3902-3908.
  • [19] Tiede K., Boxall A.B., Wang X., Gore D., Tiede D., Baxter M., Lewis J., Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge, Journal of Analytical Atomic Spectrometry 2010, 25, 7, 1149-1154.
  • [20] Qiu G., Wirianto K., Sun Y., Ting Y.P., Effect of silver nanoparticles on system performance and microbial community dynamics in a sequencing batch reactor, Journal of Cleaner Production 2016, 130, 137-142.
  • [21] Liang Z., Das A., Hu Z., Bacterial response to a shock load of nanosilver in an activated sludge treatment system, Water Research 2010, 44, 18, 5432-5438.
  • [22] Ma R., Levard C., Judy J.D., Unrine J.M., Durenkamp M., Martin B., Lowry G.V., Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids, Environmental Science & Technology 2013, 48,1, 104-112.
  • [23] Tan M., Qiu G., Ting Y.P., Effects of ZnO nanoparticles on wastewater treatment and their removal behavior in a membrane bioreactor, Bioresource technology 2015, 185, 125-133.
  • [24] Puay N.Q., Qiu G., Ting Y.P., Effect of zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor, Journal of Cleaner Production 2015, 88, 139-145.
  • [25] Kiser M.A., Westerhoff P., Benn T., Wang Y., Perez-Rivera J., Hristovski K., Titanium nanomaterial removal and release from wastewater treatment plants, Environmental Science & Technology 2009, 43, 17, 6757-6763.
  • [26] Gómez-Rivera F., Field J.A., Brown D., Sierra-Alvarez R., Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment, Bioresource Technology 2012, 108, 300-304.
  • [27] Chaúque E.F.C., Zvimba J.N., Ngila J.C., Musee N., Fate, behaviour, and implications of ZnO nanoparticles in a simulated wastewater treatment plant, Water SA, 42, 1, 72-81.
  • [28] Bletsou A.A., Asimakopoulos A.G., Stasinakis A.S., Thomaidis N.S., Kannan K., Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece, Environmental Science & Technology 2013, 47, 4, 1824-1832.
  • [29] Gimbert L.J., Hamon R.E., Casey P.S., Worsfold P.J., Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation, Environmental Chemistry 2007, 4, 8-10.
  • [30] Liu G., Wang D., Wang J., Mendoza C., Effect of ZnO particles on activated sludge: role of particle dissolution, Science of the Total Environment 2011,409, 14, 2852-2857.
  • [31] Hou L., Li K., Ding Y., Li Y., Chen J., Wu X., Li X., Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction, Chemosphere 2012, 87, 3, 248-252.
  • [32] Wang Y., Westerhoff P., Hristovski K.D., Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes, Journal of Hazardous Materials 2012, 201, 16-22.
  • [33] Kiser M.A., Ryu H,, Jang H., Hristovski K., Westerhoff P., Biosorption of nanoparticles to heterotrophic wastewater biomass, Water Research 2010, 44, 14, 4105-4114.
  • [34] Kim B., Park C.S., Murayama M., Hochella Jr M.F., Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products, Environmental Science & Technology 2010, 44, 19, 7509-7514.
  • [35] Kaegi R., Voegelin A., Sinnet B., Zuleeg S., Hagendorfer H., Burkhardt M., Siegrist H. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant, Environmental Science & Technology 2011, 45, 9, 3902-3908.
  • [36] Ganesh R., Smeraldi J., Hosseini T., Khatib L., Olson B.H., Rosso D., Evaluation of nanocopper removal and toxicity in municipal wastewaters, Environmental Science & Technology 2010, 44, 20, 7808-7813.
  • [37] Barton L.E., Auffan M., Bertrand M., Barakat M., Santaella C., Masion A., Bottero J.Y., Transformation of pristine and citrate-functionalized CeO2 nanoparticles in a laboratory-scale activated sludge reactor, Environmental Science & Technology 2014, 48, 13, 7289-7296.
  • [38] Thill A., Zeyons O., Spalla O., Chauvat F., Rose J., Auffan M., Flank, A.M., Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism, Environmental Science & Technology 2006, 40, 19, 6151-6156.
  • [39] Zeyons O., Thill A., Chauvat F., Menguy N., Cassier-Chauvat C., Oréar C., Spalla O., Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis, Nanotoxicology 2009, 3, 4, 284-295.
  • [40] Auffan M., Rose J., Wiesner M.R., Bottero J.Y., Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro, Environmental Pollution 2009, 157, 4, 1127-1133.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89e45e76-ddae-456f-919c-db0fae31244e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.