PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of thermal neutron detection capability of a CdZnTe detector in a mixed gamma-neutron radiation field

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Developments and Applications of Nuclear Technologies – NUTECH-2017 (10–13. 10. 2017, Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to investigate the thermal neutron measurement capability of a CdZnTe detector irradiated in a mixed gamma-neutron radiation fi eld. A CdZnTe detector was irradiated in one of the irradiation tubes of a 241Am-Be source unit to determine the sensitivity factors of the detector in terms of peak count rate (counts per second [cps]) per neutron flux (in square centimeters per second) [cps/neutron•cm–2•s–1]. The CdZnTe detector was covered in a 1-mm-thick cadmium (Cd) cylindrical box to completely absorb incoming thermal neutrons via 113Cd(n,γ) capture reactions. To achieve, this Cd-covered CdZnTe detector was placed in a well-thermalized neutron fi eld (f-ratio = 50.9 ± 1.3) in the irradiation tube of the 241Am-Be neutron source. The gamma-ray spectra were acquired, and the most intense gamma-ray peak at 558 keV (0.74 γ/n) was evaluated to estimate the thermal neutron fl ux. The epithermal component was also estimated from the bare CdZnTe detector irradiation because the epithermal neutron cutoff energy is about 0.55 eV at the 1-mm-thick Cd filter. A high-density polyethylene moderating cylinder box can also be fi tted into the Cd fi lter box to enhance thermal sensitivity because of moderation of the epithermal neutron component. Neutron detection sensitivity was determined from the measured count rates from the 558 keV photopeak, using the measured neutron fluxes at different irradiation positions. The results indicate that the CdZnTe detector can serve as a neutron detector in mixed gamma-neutron radiation fields, such as reactors, neutron generators, linear accelerators, and isotopic neutron sources. New thermal neutron filters, such as Gd and Tb foils, can be tested instead of the Cd filter due to its serious gamma-shielding effect.
Czasopismo
Rocznik
Strony
59--64
Opis fizyczny
Bibliogr., 15 poz., rys.
Twórcy
autor
  • Institute of Nuclear Sciences Ankara University Dogol St., Tandogan, Ankara 06100, Turkey
  • Institute of Nuclear Sciences Ankara University Dogol St., Tandogan, Ankara 06100, Turkey
autor
  • Institute of Nuclear Sciences Ankara University Dogol St., Tandogan, Ankara 06100, Turkey
autor
  • Institute of Nuclear Sciences Ankara University Dogol St., Tandogan, Ankara 06100, Turkey
autor
  • Gazi University Teknikokullar, Ankara 06100, Turkey
Bibliografia
  • 1. Dumazert, J., Coulon, R., Lecomte, Q., Bertrand, G. H. V., & Hamel, M. (2018). Gadolinium for neutron detection in current nuclear instrumentation research:A review. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 882, 53–68.
  • 2. Coulon, R., Dumazert, J., Hamel, M., Bertrand, G., Carrel, F., Kondrasovs, V., & Boudergui, K. (2016).Implementation of gadolinium for neutron measurement systems based on plastic scintillators or semiconductors. In IEEE NSS Symposium Proceedings,2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD) (pp. 1–6). Strasbourg.
  • 3. Dumazert, J., Coulon, R., Bertrand, G. H. V., Normand, S., Mechin, L., & Hamel, M. (2016). Compensated bismuth-loaded plastic scintillators for neutron detection using low-energy pseudospectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 819, 25–32.
  • 4. Fasasi, M., Jung, M., Siffert, P., & Teissier, C. (1988). Thermal neutron dosimetry with cadmium telluride detectors. Radiat. Prot. Dosim., 23, 429–431.
  • 5. Miyake, A., Nishioka, T., Singh, S., Morii, H., Mimura, H., & Aoki, T. (2011). A CdTe detector with a Gd converter for thermal neutron detection. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 654, 390–393.
  • 6. Dumazert, J., Coulon, R., Kondrasovs, V., & Boudergui, K. (2017). Compensation scheme for online neutron detection using a Gd-covered CdZnTe sensor. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 857, 7–15.
  • 7. Schlesinger, T. E., & James, R. B. (1995). Semiconductors for room temperature nuclear detector applications (Vol. 43). Series Semiconductors and Semimetals. New York: Academic Press.
  • 8. He, Z., Knoll, G. K., Wehe, D. K., & Miyamoto, J. (1997). Position sensitive single carrier CdZnTe detectors. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 388, 180–185.
  • 9. Yücel, H., Uyar, E., & Esen, A. N. (2012). Measurements on the spectroscopic performance of CdZnTe coplanar grid detectors. Appl. Radiat. Isot., 70, 1608–1615. DOI: 10.1016/j.apradiso.2012.04.027.
  • 10. González, R., Pérez, J. M., Vela, O., de Burgos, E., Oller, J. C., & Gostilo, V. (2005). Spectrometric response of large volume CdZnTe coplanar detectors. IEEE Trans. Nucl. Sci., 52(5), 2076–2084. DOI:10.1109/TNS.2005.856887.
  • 11. Martín, A. M., Iñiguez, M. P., Luke, P. N., Barquero, R., Lorente, A., Morchón, J., Gallego, E., Quincoces, G., & Martí-Climent, J. M. (2009). Evaluation of CdZnTe as neutron detector around medical accelerators. Radiat. Prot. Dosim., 133(4), 193–199. DOI: 10.1093/rpd/ncp038.
  • 12. EXFOR Database. (2017). https://wwwnds.iaea.org/exfor/servlet/X4sGetSubent?reqxγ548&subIDγ311001490 (Access date: 7 September 2017).
  • 13. Yücel, H., Budak, M. G., Karadag, M., & Yuksel, A. O. (2014). Characterization of neutron flux spectra in the irradiation sites of a 37 GBq 241Am-Be isotopic source. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 338, 139–144. DOI: 10.1016/j.nimb.2014.08.010.
  • 14. Yücel, H., & Karadag, M. (2004). Experimental determination of the γ-shape factor in the 1/E1+γ epithermal-isotopic neutron source-spectrum by dual monitor method. Ann. Nucl. Energy, 31(6), 681–695.
  • 15. Karadag, M., Yücel, H., Tan, M., & Özmen, A. (2003). Measurement of thermal neutron cross-sections and resonance integrals for 71Ga(n,γ)72Ga and 75As(n,γ)76As by using 241Am-Be isotopic neutron source. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 501(2/3), 524–535.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89e40756-68e1-4309-8f7d-266aecc2c22f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.