Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Noise attack is a potential threat to optical cryptosystems because the contaminated ciphertext always yields degraded decrypted result. What is more, such contamination can hardly be eliminated by traditional methods, as the ciphertext itself is also a noise-like image. In this paper, we propose a deep-learning-based approach to deal with this problem. The contaminated ciphertexts, which produce unrecognized decrypted images, can yield high quality ones after being repaired by a deep neural network. We take the diffractive-imaging-based encryption (DIBE) scheme as an example to illustrate our method. Numerical results are presented to show the feasibility and validity of the proposal.
Czasopismo
Rocznik
Tom
Strony
395--407
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- College of Mechanical and Electrical Engineering, Nanyang Normal University, Nanyang 473061, China
autor
- College of Mechanical and Electrical Engineering, Nanyang Normal University, Nanyang 473061, China
autor
- College of Mechanical and Electrical Engineering, Nanyang Normal University, Nanyang 473061, China
autor
- College of Mechanical and Electrical Engineering, Nanyang Normal University, Nanyang 473061, China
Bibliografia
- [1] ALFALOU A., BROSSEAU C., Optical image compression and encryption methods, Advances in Optics and Photonics 1(3), 2009: 589-636. https://doi.org/10.1364/AOP.1.000589
- [2] JAVIDI B., CARNICER A., YAMAGUCHI M., NOMURA T., PÉREZ-CABRÉ E., MILLÁN M.S., NISHCHAL N.K., TORROBA R., BARRERA J.F., HE W., PENG X., STERN A., RIVENSON Y., ALFALOU A., BROSSEAU C., GUO C., SHERIDAN J.T., SITU G., NARUSE M., MATSUMOTO T., JUVELLS I., TAJAHUERCE E., LANCIS J., CHEN W., CHEN X., PINKSE P.W.H., MOSK A.P., MARKMAN A., Roadmap on optical security, Journal of Optics 18(8), 2016: 083001. https://doi.org/10.1088/2040-8978/18/8/083001
- [3] SUI L., ZHANG X., HUANG C., TIAN A., ASUNDI A.K., Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms, Optics and Lasers in Engineering 113, 2019: 29-37. https://doi.org/10.1016/j.optlaseng.2018.10.002
- [4] SUI L., XIN M., TIAN A., Multiple-image encryption based on phase mask multiplexing in fractional Fourier transform domain, Optics Letters 38(11), 2013: 1996-1998. https://doi.org/10.1364/OL.38.001996
- [5] REFREGIER P., JAVIDI B., Optical image encryption based on input plane and Fourier plane random encoding, Optics Letters 20(7), 1995: 767-769. https://doi.org/10.1364/OL.20.000767
- [6] CHEN W., CHEN X., SHEPPARD C.J.R., Optical image encryption based on diffractive imaging, Optics Letters 35(22), 2010: 3817-3819. https://doi.org/10.1364/OL.35.003817
- [7] QIN Y., GONG Q., WANG Z., Simplified optical image encryption approach using single diffraction pattern in diffractive-imaging-based scheme, Optics Express 22(18), 2014: 21790-21799. https://doi.org/10.1364/OE.22.021790
- [8] LI T., SHI Y., Security risk of diffractive-imaging-based optical cryptosystem, Optics Express 23(16), 2015: 21384-21391. https://doi.org/10.1364/OE.23.021384
- [9] BARRERA J.F., MIRA A., TORROBA R., Optical encryption and QR codes: Secure and noise-free information retrieval, Optics Express 21(5), 2013: 5373-5378. https://doi.org/10.1364/OE.21.005373
- [10] GOUDAIL F, BOLLARO F, JAVIDI B, RÉFRÉGIER P., Influence of a perturbation in a double phase-encoding system, Journal of the Optical Society of America A 15(10), 1998: 2629-2638. https://doi.org/10.1364/JOSAA.15.002629
- [11] CHEN W., CHEN X., ANAND A., JAVIDI B., Optical encryption using multiple intensity samplings in the axial domain, Journal of the Optical Society of America A 30(5), 2013: 806-812. https://doi.org/10.1364/JOSAA.30.000806
- [12] QIN Y., WANG Z., GONG Q., Diffractive-imaging-based optical image encryption with simplified decryption from single diffraction pattern, Applied Optics 53(19), 2014: 4094-4099. https://doi.org/10.1364/AO.53.004094
- [13] ZEA A.V., BARRERA J.F., TORROBA R., Customized data container for improved performance in optical cryptosystems, Journal of Optics 18(12), 2016: 125702. https://doi.org/10.1088/2040-8978/18/ 12/125702
- [14] ZHAO S., WANG L., LIANG W., CHENG W., GONG L., High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique, Optics Communications 353, 2015: 90-95. https://doi.org/10.1016/j.optcom.2015.04.063
- [15] LECUN Y., BENGIO Y., HINTON G., Deep learning, Nature 521, 2015: 436-444. https://doi.org/10.1038/nature14539
- [16] SINHA A., LEE J., LI S., BARBASTATHIS G., Lensless computational imaging through deep learning, Optica 4(9), 2017: 1117-1125. https://doi.org/10.1364/OPTICA.4.001117
- [17] WU G., NOWOTNY T., ZHANG Y., YU H., LI D., Artificial neural network approaches for fluorescence lifetime imaging techniques, Optics Letters 41(11), 2016: 2561-2564. https://doi.org/10.1364/OL.41.002561
- [18] LYU M., WANG W., WANG H., WANG H.C., LI G., CHEN N., SITU G., Deep-learning-based ghost imaging, Scientific Reports 7, 2017: 17865. https://doi.org/10.1038/s41598-017-18171-7
- [19] LINA ZHOU, YIN XIAO, WEN CHEN, Vulnerability to machine learning attacks of optical encryptionbased on diffractive imaging, Optics and Lasers in Engineering 125, 2020: 105858. https://doi.org/10.1016/j.optlaseng.2019.105858
- [20] HAI H., PAN S., LIAO M., LU D., HE W., PENG X., Cryptanalysis of random-phase-encoding-based optical cryptosystem via deep learning, Optics Express 27(15), 2019: 21204-21213. https://doi.org/10.1364/OE.27.021204
- [21] HEATON J., Artificial Intelligence for Humans: Deep Learning and Neural Networks and Deep Learning, Vol. 3. Heaton Research Inc., St. Louis 2015: 190-198.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89e07a9a-dcf0-40f6-8a39-0ea97bbb77cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.