PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Two Different Principles of 3D Fabric Surface Reconstruction

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Porównanie dwóch różnych sposobów rekonstrukcji 3D płaskich wyrobów włókienniczych
Języki publikacji
EN
Abstrakty
EN
This paper compares the efficiency of two different methods for a 3D fabric surface reconstruction with defects. The efficiency of the methods is evaluated according to the accuracy of 3D reconstruction, especially the detection of fabric defects and their respective characteristics. In this case, the defects of mean fabric pills. Pills are small balls of entangled fibers on top of a fabric surface, and they occur on every type of fabric. Using existing methods for objective pilling evaluation, many researchers have tried to find an effective procedure for the detection of pills in a fabric image. It is very important to obtain an accurate method for 3D surface reconstruction and the subsequent detection of pills. In the present study, the methods tested differ in the principle of creation of the 3D surface. The first method (method A) is called the gradient filed method, the principle of which is based on the use of the shadows of pills for 3D reconstruction. The second method (method B) uses non-contact laser profilometry for 3D surface reconstruction. A Talysurf CLI 500 instrument was used to trace the surface fabrics and to reconstruct the profile of the fabric surface. The results showed that method A should be more reliable for this purpose.
PL
Artykuł porównuje wydajność dwóch metod rekonstrukcji 3D powierzchni płaskich struktur włókienniczych posiadających defekty. Wydajność oceniano biorąc pod uwagę jako kryterium dokładność scharakteryzowania uszkodzeń tkaniny szczególnie jej pilingowania. Badano dwiema metodami. Pierwsza zwana metodą gradientową oparta była na wykorzystaniu cieni spowodowanych spilingowaniem. Druga metoda wykorzystała bezdotykową profilometrię laserową. Zastosowano przyrząd CLI 500. Stwierdzono, że metoda pierwsza jest bardziej przydatna do realizacji założonego zadania.
Rocznik
Strony
38--43
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Department of Textile Evaluation, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic
autor
  • Department of Textile Evaluation, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic
Bibliografia
  • 1. Smith S. Fabric Pilling Test Methods. Textiles – The Quarterly Magazine of the Textile Institute 2014; 1:17-19.
  • 2. Abril HC, Millan MS, Torres Y, et al. Automatic Method Based on Image Analysis for Pilling Evaluation in Fabrics. Optical Engineering 1998; 37: 2937-2947.
  • 3. Brown MZ, Burschka D and Hager GD. Advances in Computational Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 2003; 25: 993- 1008.
  • 4. Chen X, Xu Z, Chen T, et al. Detecting Pills in Fabric Images Based on Multiscale Matched Filtering. Text Res J 2009; 79: 1389-1395.
  • 5. Cherkassky A and Weinberg A. Objective Evaluation of Textile Fabric Appearance Part 1: Basic Principles, Protrusion Detection, and Parameterization. Text Res J 2010; 80: 226-235.
  • 6. Kim SC and Kang TJ. Fabric Surface Roughness Evaluation Using Wavelet-Fractal Method - Part II: Fabric Pilling Evaluation. Text Res J 2005; 75: 761-770.
  • 7. Mendes AO, Fiadeiro PT, Teixeira P, et al. Dual-scanning System for Optical Estimation of Pilling Formation. Text Res J 2010; 80: 1201-1213.
  • 8. Xu B. Stereovision for 3D Measurements of Fabric Pilling. Eco-dyeing, Finishing and Green Chemistry 2012; 441: 631-635.
  • 9. Techniková L, Tunák M and Janáček J. Pilling Evaluation of Patterned Fabrics Based on a Gradient Field Method. Indian J Fibre and Text Res 2016; 41: 97-101.
  • 10. EN ISO 12945-2:2001. Textile – Determination of fabric propensity to surface fuzzing and to pilling - Part 2: Modified Martindale method.
  • 11. Ramgulam RB, Amirbayat J and Porat I. The Objective Assessment of Fabric Pilling. Methodology. J Text Inst 1993; 84: 221-226.
  • 12. Sul IH, Hong KH, Shim H, et al. Surface Roughness Measurement of Nonwovens Using Three-Dimensional Profile Data. Text Res J 2006; 76: 828- 834.
  • 13. Agrawal A and Chellappa R. An Algebraic Approach to Surface Reconstruction from Gradient Fields. 8th European Conference on Computer Vision 2005; 1: 174-181.
  • 14. Agrawal A, Raskar R and Chellappa R. What is the Range of Surface Reconstructions from a Gradient Field? 9th European Conference on Computer Vision 2006; 2: 578-591.
  • 15. Gonzales RC and Wood RE. Digital Image Processing. 2nd ed. New Jersey: Pearson Education, Inc., 2002.
  • 16. Hemachander S, Verma A, Arora S, et al. Locally Adaptive Block Thresholding Method with Continuity Constraint. Patt Recognit Lett 2007; 28: 119-124.
  • 17. Techniková L, Tunák M and Janáček J. New Objective System of Pilling Evaluation for Various Types of Fabrics. J Tex Inst 2016; 0: 00. [Accepted 21st February 2016. Article in press]. DOI: 10.1080/00405000.2016.1160476
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89db88da-27aa-4ebc-b406-fa921145ddd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.