PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of mechanical properties and wear of AA5083/316 stainless steel surface-composite developed through multi-pass friction stir processing (MPFSP)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this investigation, the AA5083/316 stainless steel (ss) surface composite was generated by the friction stir processing (FSP) with the aim of improving the mechanical properties, the corrosion and tribological performances of the composite. The FSP process was conducted at different tool pass numbers (1-P, 2-P, and 4-P) and a constant tool rotational (900 rpm) and travel (85 mm/min) speeds. To analyze the microstructure of the samples, optical (OM) and scanning electron microscopes (SEM) were employed to characterize the scattering of the 316 stainless steel (ss) particles within the AA5083 matrix. It was found that multi-pass FSP resulted in substantial grain refinement from 7.02 to 5.89 μm and better scattering of the reinforcement in the AA5083 Al matrix. Results also indicated that the mechanical and wear properties of the composite layers were enhanced by increasing the pass number from 1-pass to 4-pass, which can be credited to the formation of finer 316 stainless steel (ss) particles appropriately dispersed in the Al substrate. Furthermore, the results depicted that the corrosion resistance of the samples is enhanced with the increase of pass number.
Rocznik
Strony
art. no. e13, 2023
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil Engineering, Xijing University, Xi’an 710123, Shaanxi, China
  • School of Energy and Resource, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
  • Department of Materials Engineering, South Tehran Branch, Islamic Azad University, Tehran 1459853849, Iran
autor
  • Department of Mechanical Engineering, College of Engineering , Kharj, Prince Sattam Bin Abdulaziz University, Al‑Kharj 11942, Saudi Arabia
  • Department of Mechanical Engineering, University of Tunis El Manar, ENIT, BP 37, Le Belvedere, 1002 Tunis, Tunisia
  • Department of Industrial and Production Engineering, Federal University of Technology, Akure, Nigeria
Bibliografia
  • 1. Satyanarayana MVNV, Bathula S, Kumar A. Effect of external cooling on fatigue crack growth behavior of friction stir processed AA6061 alloy. Eng Fract Mech. 2022;261:108236.
  • 2. Paidar M, VairaVignesh R, Moharrami A, Ojo OO, Jafari A, Sadreddini S. Development and characterization of dissimilar joint between AA2024-T3 and AA6061-T6 by modified friction stir clinching process. Vacuum. 2020;176:109298.
  • 3. Morampudi P, VenkataRamana VSN, Bhavani K, Kishore Reddy C, Sri Ram Vikas K. Wear and corrosion behavior of AA6061 metal matrix composites with ilmenite as reinforcement. Mater Today Proc. 2022;52:1515-20.
  • 4. Yang R, Zhang Z, Zhao Y, Chen G, Guo Y, Liu M, Zhang J. Effect of multi-pass friction stir processing on microstructure and mechanical properties of Al3Ti/A356 composites. Mater Charact. 2015;106:62-9.
  • 5. Balakrishnan M, Dinaharan I, Palanivel R, Sathiskumar R. Effect of friction stir processing on microstructure and tensile behavior of AA6061/Al3Fe cast aluminum matrix composites. J Alloy Compd. 2019;785:531-41.
  • 6. Parumandla N, Adepu K. Effect of Al2O3 and SiC nano reinforcements on microstructure, mechanical and wear properties of surface nanocomposites fabricated by friction stir processing. Mater Sci. 2018;24:338-44.
  • 7. Luo J, Liu S, Paidar M, VairaVignesh R, Mehrez S. Enhanced mechanical and tribological properties of AA6061/CeO2 composite fabricated by friction stir processing. Mater Lett. 2022;318:132210.
  • 8. Selvakumar S, Dinaharan I, Palanivel R, Ganesh Babu B. Characterization of molybdenum particles reinforced Al6082 aluminum matrix composites with improved ductility produced using friction stir processing. Mater Charact. 2017;125:13-22.
  • 9. Huang G, Shen Y, Guo R, Guan W. Fabrication of tungsten particles reinforced aluminum matrix composites using multi-pass friction stir processing: evaluation of microstructural, mechanical and electrical behavior. Mater Sci Eng A. 2016;674:504-13.
  • 10. Jain VK, Yadav MK, Saxena A, Siddiquee AN, Khan ZA. Effect of tool rotational speed on microstructure and mechanical properties of friction stir processed AA5083/Fe-Al in-situ composite. Mater Today Proc. 2021;46:6496-500.
  • 11. Agarwal M, Shukla J, Ajit KN, Shukla RS. Microstructural evaluation of Al6061-SS316L cast composite reinforced by Ball-milled Al/Powder-SS316L/chip. Mater Today Proc. 2020;26:556-60.
  • 12. Sanusi KO, Akinlabi ET. Experimental investigation of magnesium alloy processed by friction stir process using stainless steel powder as matrix composite. Mater Today Proc. 2018;5:18468-74.
  • 13. Abraham SJ, Dinaharan I, RajaSelvam JD, Akinlabi ET. Microstructural characterization of vanadium particles reinforced AA6063 aluminum matrix composites via friction stir processing with improved tensile strength and appreciable ductility. Compos Commun. 2019;12:54-8.
  • 14. Soustani MF, Taghiabadi R, Jafarzadegan M, Farahani MV. Effect of multi-pass friction stir processing on microstructure and mechanical properties of cast Al-7Fe-5Ni alloy. Mater Res Express. 2019. https://doi.org/10.1088/2053-1591/ab3829.
  • 15. Lin J, Zhang D, Zhang W, Qiu C. Microstructure and mechanical properties of ZK60 magnesium alloy prepared by multi-pass friction stir processing. Mater Sci Forum. 2017;898:278-83.
  • 16. Zhilong Lu, Zhang D. Microstructure and mechanical properties of a fine-grained AZ91 magnesium alloy prepared by multi-pass friction stir processing. Mater Sci Forum. 2016;850:778-83.
  • 17. Moharrami A, Razaghian A, Paidar M, Slapakova M, Ojo OO, Taghiabadi R. Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing. Mater Chem Phys. 2020;250: 123066.
  • 18. Eftekharinia H, Amadeh AA, Khodabandeh A. Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes. Rare Met. 2020;39:429-35.
  • 19. Mirjavadi SS, Mohammad Alipour AMS, Hamouda AM, Kord S, Afshari BM, Koppad PG. Effect of multi-pass friction stir processing on the microstructure, mechanical and wear properties of AA5083/ZrO2 nanocomposites. J Alloys Compd. 2017;726:1262-73.
  • 20. Patel K, Ghetiya ND, Bharti S. Effect of single and double pass friction stir processing on microhardness and wear properties of AA5083/Al2O3 surface composites. Mater Today Proc. 2022;57:38-43.
  • 21. Moustafa E. Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites. Materials. 2017;10:1053.
  • 22. Mehdi H, Mishra RS. Effect of multi-pass friction stir processing and SiC nanoparticles on microstructure and mechanical properties of AA6082-T6. Adv Ind Manuf Eng. 2021;3: 100062.
  • 23. Patel V, Badheka V, Li W, Akkireddy S. Hybrid friction stir processing with active cooling approach to enhance superplastic behavior of AA7075 aluminum alloy. Arch Civil Mech Eng. 2019;19:1368-80.
  • 24. Pradeep S, Jain VKS, Muthukumaran S, Kumar R. Microstructure and texture evolution during multi-pass friction stir processed AA5083. Mater Lett. 2021;288:129382.
  • 25. Selvakumar S, Dinaharan I, Palanivel R, GaneshBabu B. Development of stainless steel particulate reinforced AA6082 aluminum matrix composites with enhanced ductility using friction stir processing. Mater Sci Eng A. 2017;685:317-26.
  • 26. Segaetsho MOM, Msomi V, Moni V. Corrosion behaviour of friction stir welded dissimilar joints produced from AA5083 and other alloys of aluminium: a critical review. Mater Today Proc. 2022;56:1696-701.
  • 27. Kumar CNS, Bauri R, Yadav D. Wear properties of 5083 Al-W surface composite fabricated by friction stir processing. Tribol Int. 2016;101:284-90.
  • 28. Dilkush Shaik I, Sudhakar GCSG, Bharat V, Varshini SV. Tribological behavior of friction stir processed AA6061 aluminum alloy. Mater Today Proc. 2021;44:860-4.
  • 29. Paidar M, Tahani K, VairaVignesh R, Ojo OO, Ezatpour HR, Moharrami A. Modified friction stir clinching of 2024-T3 to 6061-T6 aluminium alloy: effect of dwell time and precipitation-hardening heat treatment. Mater Sci Eng A. 2020;791:139734.
  • 30. Mehdi H, Mishra RS. Effect of multi-pass friction stir processing and SiC nanoparticles on microstructure and mechanical properties of AA6082-T6. Adv Ind Manuf Eng. 2021;3:100062.
  • 31. Paidar M, Ojo OO, Ezatpour HR, Heidarzadeh A. Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B4C composite fabricated by accumulative roll bonding (ARB). Surf Coat Technol. 2019;361:159-69.
  • 32. Paidar M, Bokov D, Mehrez S, Ojo OO, Ramalingam VV, Memon S. Improvement of mechanical and wear behavior by the development of a new tool for the friction stir processing of Mg/B4C composite. Surf Coat Technol. 2021;426: 127797.
  • 33. Karpasand F, Abbasi A, Ardestani M. Effect of amount of TiB2 and B4C particles on tribological behavior of Al7075/B4C/TiB2 mono and hybrid surface composites produced by friction stir processing. Surf Coat Technol. 2020;390:125680.
  • 34. Huang GQ, Yan YF, Wu J, Shen YF, Gerlich AP. Microstructure and mechanical properties of fine-grained aluminum matrix composite reinforced with nitinol shape memory alloy particulates produced by underwater friction stir processing. J Alloy Compd. 2019;786:257-71.
  • 35. Li X, Zhang Z, Peng Y, Yan D, Tan Z, Zhou Qi, Wang K. In situ synthesized nano-Al4C3 reinforced aluminum matrix composites via friction stir processing. J Market Res. 2021;14:2658-64.
  • 36. Amra M, Ranjbar K, Dehmolaei R. Mechanical properties and corrosion behavior of CeO2 and SiC incorporated Al5083 alloy surface composites. J Mater Eng Perform. 2015;24:3169-79.
  • 37. Jamali A, Mirsalehi SE. Production of AA7075/ZrO2 nanocomposite using friction stir processing: metallurgical structure, mechanical properties and wear behavior. CIRP J Manuf Sci Technol. 2022;37:55-69.
  • 38. Paidar M, Asgari A, Ojo OO, Saberi A. Mechanical properties and wear behavior of AA5182/WC nanocomposite fabricated by friction stir welding at different tool traverse speeds. JMEPEG. 2018. https://doi.org/10.1007/s11665-018-3297-7.
  • 39. Nikoo MF, Azizi H, Parvin N, YousefpourNaghibi H. The influence of heat treatment on microstructure and wear properties of friction stir welded AA6061-T6/Al2O3 nanocomposite joint at four different traversing speed. J Manuf Process. 2016;22:90-8.
  • 40. Faradonbeh AM, Shamanian M, Edris H, Paidar M, Bozkurt Y. Friction stir welding of Al-B4C composite fabricated by accumulative roll bonding: evaluation of microstructure and mechanical behavior. J Mater Eng Perform. 2018;27:835-46.
  • 41. Maji P, Nath RK, Paul P, Meitei RKB, Ghosh SK. Effect of processing speed on wear and corrosion behavior of novel MoS2 and CeO2 reinforced hybrid aluminum matrix composites fabricated by friction stir processing. J Manuf Process. 2021;69:1-11.
  • 42. Kalantarrashidi N, Alizadeh M. Structure, wear and corrosion characterizations of Al/20wt.% Zn multilayered composites fabricated by cross-accumulative roll bonding. J Manuf Process. 2020;56:1050-8.
  • 43. Amra M, Ranjbar K, Dehmolaei R. Mechanical properties and corrosion behavior of CeO2 and SiC incorporated Al5083 alloy surface composites. JMEPEG. 2015;24:3169-79.
  • 44. Patel V, Li W, Andersson J, Li Na. Enhancing grain refinement and corrosion behavior in AZ31B magnesium alloy via stationary shoulder friction stir processing. J Market Res. 2022;17:3150-6.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89d53ea1-c06b-4498-9f3e-e8e360a7380c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.