PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of Superfinished Surface Formation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article deals with the simulation of single-oscillating grooves superfinishing. A model of the superfinishing tool was created according to the input information about the tool and the superfinishing process. Using this tool, a simulation of the cutting process was performed. The input parameters for the simulation were the cutting conditions, which determined the paths of tools individual grains (process kinematics). The simulation is realized by gradual removal of the workpiece material by individual grains of the tool. The result of the simulation is the profile of the superfinished surface at an evaluation length of 1.25 mm. It is possible to determine the surface roughness parameters from the profile. Creating and displaying multiple profiles side by side creates a graphical model of the superfinished surface. The simulation can be used for numerical simulation experiments, where both material and energy are saved. The article presents one such experiment together with the results – the surface roughness was influenced by individual factors. The simulation results (surface roughness parameters and surface appearance) were compared with the real superfinished surface on the outer ring of the bearing. This surface was manufactured under mass production conditions. The comparison confirmed that a simulation is a suitable tool for research of abrasive machining methods. At the end of the article is a discussion about a possible improvement of the simulation - considering 3D grains of the tool.
Słowa kluczowe
Twórcy
  • Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, J. Bottu 25, 917 24 Trnava, Slovak Republic
Bibliografia
  • 1. Grama, L., Gabor, M., Dattoma, V., Beno, J. Study of different process parameters on the surface roughness at superfinishing. Scientific Bulletin of the Petru Maior University of Tirgu Mures, Vol. 7 (XXIV), No. 1, 2010.
  • 2. Brzhozovskii, B., Zakharov, O. More precise superfinishing by means of statistical modeling. Russian Engineering Research. 30, 2010, 1271-1275. https://doi.org/10.3103/S1068798X1012021X
  • 3. Yamaguchi H. Superfinishing. In: Chatti S., Laperrière L., Reinhart G., Tolio (Eds.) CIRP Encyclopedia of Production Engineering. Springer, Berlin-Heidelberg 2019. https://doi.org/10.1007/978-3-64235950-76436-3
  • 4. Zakharov, O.V., Datskovskaya, E.A. Setup of centerless superfinishing machine tools. Russian Engineering Research, 30(12), 2010, 1263–1267, https://doi.org/ 10.3103/S1068798X10120191
  • 5. Zakharov, O.V. Principles for the adjustment of centerless superfinishing machines. Russian Engineering Research, 31(5), 2011, 465–468, https:// doi.org/10.3103/S1068798X11050261
  • 6. Pawlus, P., Reizer, R., Wieczorowski, M. A review of methods of random surface topography modeling. Tribology International, 152, 2020.
  • 7. Lepadatescu, B., Popa, L., Buzatu, C. Studies and researches regarding a mathematical model of superfinishing manufacturing process. Mechanical engineering; Recent advances in mechanical engineering and automatic control, 2012, 151–157.
  • 8. Buzatu, C., Fota, A., Lepadatescu, B., Duicu, S. Modelling by finite element of the part-tool flexible technological system deformations at superfinishing process. In: Proceedings of the 8th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, 2009, 139-142.
  • 9. Jiang, Q., Ge, Z. Simulation on topography of superfinished roller surfaces. Sc. China Ser. B-Chem. 45, 2002, 122–126. https://doi.org/10.1360/02yb9017
  • 10. Patir, N. A numerical model for random generation of rough surfaces. Wear, 45, 1977, 263–77. https:// doi.org/10.1016/0043-1648(78)90157-6
  • 11. Liao, D., Shao, W., Tang, J., Li, J.An improved rough surface modeling method based on linear transformation technique. Tribol Int., 119, 2018, 786–94. https://doi.org/ 10.1016/j.triboint.2017.12.008
  • 12. You, SJ, Ehmann, KF. Computer synthesis of threedimensional surfaces. Wear, 145, 1991, 29–42. https://doi.org/10.1016/0043-1648(91)90237-O.
  • 13. Neagu-Ventzel, S., Cioc, S., Marinescu, I. A wear model and simulation of superfinishing process: analysis for the superfinishing of bearing rings,Wear, 26(9–10), 2006, 1061-1069.
  • 14. Arrazola, P.: Modeling in cutting. CIRP Encyclopedia of Production Engineering, 2014, 1-7, https:// doi.org/10.1007/978-3-642-35950-7_16800-1.
  • 15. Pawlus, P., Reizer, R., Wieczorowski, M., Krolczyk, G. Material ratio curve as information on the state of surface topography – A review. Precision Engineering, 65, 2020. https://doi.org/ 10.1016/j. precisioneng.2020.05.008.
  • 16. Buzatu, C., Balacescu, A. Surface roughness modelling at ball bearing rings superfinishing on the cutting fluid and process parameters influence. In: Proc. of the International Conference on Economic Engineering and Manufacturing Systems, Braşov, 25–26 Oct. 2007, 8, 3a(21a).
  • 17. Lepadatescu, B., Yordanova, S. Neuro-fuzzy logic based modelling for optimisation in superfinishing process. Advances in Automatic Control, Modelling & Simulation. http://www. wseas.us/e-library/conferences/2013/Brasov/ ACMOS/ACMOS-06.pdf
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89d52bfe-7e27-4689-9a67-900cf1de2804
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.