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Abstract: The paper presents the simple algorithm of simultaneous localisation and mapping (SLAM) without odometry information. 
The proposed algorithm is based only on scanning laser range finder. The theoretical foundations of the proposed method are presented. 
The most important element of the work is the experimental research. The research underlying the paper encompasses several tests, 
which were carried out to build the environment map to be navigated by the mobile robot in conjunction with the trajectory planning  
algorithm and obstacle avoidance. 
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1. INTRODUCTION 

In recent years, robotics researchers have shown an increas-
ing interest in autonomy of mobile vehicles. The autonomy of 
robots is mainly associated with obstacle detection and avoidance 
systems (Gao et al., 2019; Rulin, 2017), precise navigation sys-
tems (Romaniuk et al., 2016; Bakkali et al., 2007), new control 
methods allowing adaptation to failures (Ambroziak et al., 2019; 
Lanzon et al., 2014), cooperation of a few objects, and formation 
and swarm motion (Ambroziak et al., 2015; Kownacki et al., 
2019). Mentioned topics relate to tasks carried out by mobile 
robots in indoor and outdoor conditions. In both cases the problem 
of navigating a robot in an unknown environment without the 
possibility of global positioning system (GPS), real-time localisa-
tion system (RTLS), etc. usage is a current topic. Frequently, the 
task of navigating a mobile robot is based on a map built during a 
mission, which is at the same time used to try to localise the robot. 
This is known as the Simultaneous Localisation and Mapping 
(SLAM) technique, and has been discussed in the works of Dis-
sanayake et al. (2000) and Dissanayake et al. (1999). SLAM is 
one of the key enabling technologies of mobile robot autonomy 
and is regarded as one of most important problems in the pursuit 
of building fully autonomous objects. Despite a significant pro-
gress in this topic, it is still a great challenge and an open case 
(Chen et al., 2017). Currently available SLAM methods provide 
good solutions for mapping static, structured environments with 
limited volume–size. However, facilitating a robot to autonomously 
navigate a map of unstructured, dynamic and large-size environ-
ment continues to remain an emerging and open research prob-
lem. In many different SLAM techniques we can distinguish full 
(Guivant et al., 2002) and online (Dubbelman et al., 2015) ones. 
Other common distinctions are volumetric and feature-based (Li et 
al., 2019), topological and metric (Li et al., 2010), active and 
passive (Soragna et al., 2019), and single- and multi-robot (Xiaolin 

et al., 2012). All SLAM techniques use different methods of filtra-
tion and position estimation. The most popular one is the usage of 
Extended Kalman Filters (EKF SLAM). EKF SLAM was introduced 
in Smith et al. (1990) and Moutarlier et al. (1989); these were 
single state vectors used to estimate robot locations. A second set 
of algorithms solving the SLAM are the graph-based optimisation 
techniques. Graph-based approach was first described in Lu et al. 
(1997) and Dellaert (2005). The third group of SLAM techniques is 
based on particle filters, which is a kind of nonparametric statisti-
cal filtering technique. This method was introduced in Zhu et al. 
(2019) and mostly popular in online SLAM because of grooving 
availability of cheap and efficient computers on module. 

SLAM techniques and all previously listed methods require the 
use of appropriate sensors and are using odometry information. 
Methods that do not use odometry are not found in the literature 
and we can mention a few papers such as Klecka et al. (2014), 
where authors propose non-odometry feature based approach to 
SLAM. 

This paper addresses the problem of SLAM without any addi-
tional odometry measurement sensor such as inertial measure-
ment unit (IMU) or encoders for movements’ calculations. The 
theoretical foundations of the proposed method are presented. 
The most important element of the work is the experimental re-
search: a number of tests were carried out to build the environ-
ment map to be navigated by the mobile robot in conjunction with 
the trajectory planning algorithm and obstacle avoidance. 

2. SENSOR SYSTEM USED IN STUDIES 

Different SLAM methods use different types of sensors such 
as CCD cameras, rangefinders, lidars, and RGBD sensors. In this 
work, scanning laser range finder UTM30-LX (Fig. 1) was used. 
This kind of sensor emits a pulse every quarter, half or one de-
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gree over an angular range of 270° and returns a planar cross-
section of the observed scene in polar coordinate form. The use of 
a specific type of sensor requires checking its measurement 
quality. The quality of the measurement depends on the following 
stages. 

 
Fig. 1. Laser range finder UTM30-LX 

Laser rangefinder UTM30-LX allows to measure distances in 
the range of 0.1–30.0 m. An important parameter is the standard 
deviation of the measurement from the actual value, because it 
determines the resolution of the environment map (it is not possi-
ble to make an environment map with an accuracy of 1 mm if the 
standard deviation is, for example, 10 mm). 

Fig. 2 shows standard deviation of the scanning laser range-
finder measurements at different angles of surface, which reflect-
ed the beam of radiation coming from the sensor. There is a 
relatively large increase in the standard deviation for position of 
the reflecting surface other than perpendicular to the laser beam, 
but these are still quite small values (Nakamura et al., 2014). 

On the basis of the results shown in the Fig. 2, it can be stated 
that it is possible to make the environment map with the accuracy 
of 1 cm with using scanning laser rangefinder. 

 
Fig. 2. Standard deviation of laser scanning range finder measurements 

3. DESCRIPTION OF THE LOCALISATION  
AND MAPPING ALGORITHM 

The main idea of the algorithm is the same as in the article 
(Janah et al., 2018). The localisation method is based on applying 
scan (cloud of points from one measurement taken with scanning 
laser rangefinder) to the environment map. Applying a scan con-

sists in performing a rotation and displacement of it such that the 
greatest number of points overlaps the map of the environment – 
the more points imposed, the better the scan fits and thus more 
accurate the position and orientation relative to the surroundings. 

The difference between the presented approach and the ap-
proach from work (Janah et al., 2018) is the way of moving and 
rotating the scan in order to match it with the map. In Janah et al. 
(2018) the Particle Swarm Optimisation (PSO) algorithm was 
used, while in this work a brute force algorithm was chosen (de-
scription shown below). 

Firstly, measurements from one scan are collected and 
stored. If the first scan is done, the collected points are saved on 
the map. In case of other scans, calculations are made to deter-
mine the location. If the location has changed, the points collected 
in this scan are placed on the map. After mapping, if the scan was 
the last one, the program ends. In any other case, the next meas-
uring cycle starts. Fig. 3 presents the flowchart of the proposed 
localisation and mapping method. 

 
Fig. 3. Flowchart of localisation and mapping method 

Fig. 4 shows the location and orientation of the laser range 
finder relative to the global coordinate system. The map of envi-
ronment shows the points at which obstacles in the global coordi-
nate system were detected. The transfer of measured points to 
the global coordinate system is based on the formula: 

[
𝑋𝑚
𝑖

𝑌𝑚
𝑖
] = [

cos(𝜑𝑟) − sin(𝜑𝑟)

sin(𝜑𝑟) cos(𝜑𝑟)
] [

𝑋𝑠 𝑖

𝑌𝑠 𝑖
] + [

𝑥𝑟
𝑦𝑟
]  (1) 

where xr, yr, φr – are coordinates informing about the linear and 
angular position of the laser range finder relative to the global 
coordinate system; Pi – i-th point of the scan; sXi, sYi – the coordi-
nates of the i-th point in the coordinate system associated with the 
laser range finder; and mXi, mYi – the coordinate of the i-th point in 
the global coordinate system. 

The location system searches for relevant shifting and rotation 
changes to minimise the function f(z), which is shown below: 

𝑓(𝑧) = 1 −
𝐷𝑎𝑡𝑎𝑓𝑖𝑡(𝑧)

𝐷𝑎𝑡𝑎𝑣𝑎𝑙𝑖𝑑
  (2) 
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where z  [x,y,φ]T is shift and rotation of the sensor coordinate 
system relative to the coordinate system in the previous meas-
urement cycle, which is elucidated in Nakamura et al. (2014) and 
Janah et al. (2018). 

 
Fig. 4. Coordinate system 

Datavalid is the number of points collected in the current scan 
that are suitable for determining the location. Points are rejected 
whose distance from laser range finder is less than 15 cm, and 
those that are the result of the mixed pixels effect. 

𝐷𝑎𝑡𝑎𝑓𝑖𝑡(𝑧) = ∑ 𝑔(𝑖)𝑁
𝑖=1   (3) 

Datafit(z) is the number of points that were taken into account 
when calculating Datavalid and coincide with the map. The g(i) 
function assumes a value of 0 if the i-th point is not reflected on 
the map and 1 in the other cases. The affiliation of a given point to 
the map is checked after the earlier appropriate rotation and 
moving this point to the global coordinate system. 

Minimising the f(z) function consists in searching for such z, 
for which this function assumes the smallest value. Ideally, this 
means finding a relative shift and rotation for which f(z) assumes a 
value of 0. This would mean that all points taken into account are 
reflected in the environment map. 

Fig. 5 shows how the search algorithm for relative displace-
ment and rotation works. The relative displacement in the coordi-
nate axes is limited on the range from −5 cm to 5 cm every 1 cm 
(map resolution) and relative rotation from −5° to 5° every 0.2° 
(appropriate relative displacement is shown as gray cells, current 
position of the sensor as a black cell). From the given area, the z 
for which the f(z) function has the smallest value is selected. 

 
Fig. 5. Search area around the sensor position in the previous cycle 

4. OBSTACLES DETECTION 

In order for the robot to get from the start point to the target 
point, it must detect objects that stand in its way and prevent it 
from travelling between these points in a straight line. To this end, 
the so-called occupancy matrix determines the places where, due 
to the existence of obstacles, the robot is not able to physically 
find itself (as the robot is understood as the centre of the sensor in 
the plan view). 

For ease of use, the area where the robot will move will be 
limited to the surface of a square with 2 m × 2 m sides. The occu-

pation matrix will take the form of a 200  200 array, each ele-
ment corresponding to a square with sides of 1 cm × 1 cm. The 
element assumes a value of 1 if the robot cannot be found in the 
given square with sides of 1 cm × 1 cm. Fig. 6 shows how the 
cells that the surface is divided into are assigned to the occupancy 
matrix T. 

 
Fig. 6. Division of operational environment into elementary cells 

The obstacle detection and avoidance method assume a safe 
area around each obstacle (larger than the nominal dimensions of 
the object). Fig. 7 presents the way of representing obstacles and 
the obstacle-free area. Obstacles are shown in black colour. The 
gray area indicates the area where the robot cannot be found due 
to its dimensions – safety area (zone). The area in which the robot 
can move is marked in white. 

 
Fig. 7. Obstacle and safety zone scheme 

5. PATH PLANNING 

Robot path planning is an important element of the mobile ro-
bot navigation process. In this case, Rapidly Exploring Random 
Trees (RRT) algorithm was used due to the fact that it can be 
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used as an online planning method and does not need large 
computing resources. Furthermore, RRT method is quite simple 
approach to planning paths through an obstacle field from a start 
node to an end node. 

Fig. 8 shows the principle and the result of track search using 
the RRT algorithm. A graph is created to which nodes and edges 
are added randomly. A random qrand point is created. The graph is 
searched for the node closest to the qrand point. This node is called 
qnear. An episode with qrand and qnear ends is created. On this seg-
ment, qnew is placed at a distance equal to the length of the step (if 
the segment length is less than the length of the step, qrand be-
comes the point of qnew) from the point qnear. A new node is added 
to the graph, which is the point qnew and a new edge, i.e. a seg-
ment with ends at points qnear and qnew. 

 
Fig. 8. Obstacle and safety zone scheme 

6. MOBILE PLATFORM 

A mobile robot platform specially prepared for this purpose 
was used to conduct the experimental tests of mapping, localisa-
tion, obstacle detection, avoidance and path planning. It is a four-
wheeled robot with each wheel separately driven by a DC motor 
(Fig. 9). Beagle Bone Black computer on module (COM) was used 
as a main computer responsible for all navigational tasks. COM 
collects data from scanning laser rangefinder, which was mounted 
on the top of the robot. The UTM-30LX laser scanner communi-
cates with the computer via a USB port. This causes many difficul-
ties related to the implementation of communication. The robot is 
using the Linux Debian 7.5 operating system. Libraries responsi-
ble for map building, location, obstacle avoidance and trajectory 
planning were developed. 

 
Fig. 9. Mobile platform used in the experimental tests 

7. TEST’S RESULTS 

The mobile robot’s navigation task was divided into three 
parts: mapping and localisation, obstacle detection and path 
planning. A special, structured test environment has been devel-
oped for the experimental verification of the algorithms (Fig. 10). 
The prepared environment was specially configured to be simpli-
fied and in the first stage of the algorithm, sufficient verification 
was carried out to check all parts of the navigation system. 
Scheme of the objects’ placement located in the experimental 
environment is presented in the Fig. 11. The scheme shows the 
environment in which the localisation algorithm was tested. The 
black point at the bottom of the picture indicates the place where 
the sensor was placed when the program implementing this loca-
tion method started. 

 
Fig. 10. Experimental environment 

 
Fig. 11. Placement of objects in experimental environment 

Figs 12–14 show how important it is to process data from the 
sensor. Using the data visible on Fig. 12, ascertainment of the 
correct location is possible but the map would be updated with 
incorrect points, which with each step would have an increasing 
impact on the correctness of location determination and would 
completely prevent the correct operation of the other systems, 
such as setting a path to avoid obstacles. 
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Fig. 12. Cloud of points from the raw data (Gao et al., 2019) 

 
Fig. 13. Cloud of points after data filtration (Gao et al., 2019) 

 
Fig. 14. Occupancy grid generated with using prepared map  

     of the environment 

After removing the error points (filtration was presented in Fig. 
13), an occupancy matrix was created. Fig. 15 presents this ma-
trix in a graphic form. The area in which the robot cannot be found 

is highlighted in gray. The robot can move freely in the white area. 

 
Fig. 15. Generated graph with RRT path planning method. RRT - rapidly 

exploring random trees 

It is very clearly visible in Fig. 14 that some areas within which 
the robot cannot move are not included in the occupancy matrix. 
This is due to the fact that the sensor does not collect distance 
from objects behind other objects. Therefore, when the mobile 
robot performs the obstacle avoidance task, this matrix must be 
updated, and the RRT graph and path mapping ought to be creat-
ed again. 

To create the path that the robot should follow so that it can 
get from the start point to the target point, the RRT algorithm 
described was used. Fig. 15 shows the results of this algorithm for 
500 iterations. The inaccessible area is marked in gray. The graph 
is black. The area of graph filling was limited from below by the 
coordinate of the position of the sensor. The graph fills the white 
area with the edges without crossing the gray area. The edges are 
therefore sections on which the robot can move without interfering 
with other objects. 

After searching the graph and applying the smoothing and op-
timisation algorithm, the desired robot path was obtained and 
presented in Fig. 16. 

 
Fig. 16. Found and optimised path 
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In the original implementation, the sensor location was deter-
mined every few seconds. Modification of the method was based 
on using every 20-th point of the scan to determine the location 
and updating the map with all points. This modification caused a 
significant increase in the speed of algorithm (200 iterations of the 
algorithm were made in 36.7 s). 

8. CONCLUSIONS 

The paper addresses the problem of SLAM without any addi-
tional odometry measurements sensor for movements’ calcula-
tions. Only laser scanner rangefinder data were used to build the 
map and locate the robot. Whole navigation system of the robot 
includes mapping and localisation subsystem, obstacle detection 
and avoidance system based on a prepared map and path plan-
ning algorithm using RRT method. The next step should be testing 
of the system in an unstructured environment, which is crowded 
with more objects. 
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