PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Isolation and Characterization of Schmutzdecke in Slow Sand Filter for Treating Domestic Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research aimed to discover the macroscopic, microscopic, and physiological characteristics and the genus of heterotrophic bacteria found in the schmutzdecke or biofilm layer in slow sand filters. The isolation of heterotrophic bacteria in the schmutzdecke applied the pour plate and quadrant streak method, while the characterization used macroscopic, microscopic, and physiological tests. Samples were taken from the schmutzdecke on top of the filter layer, and they were diluted 3, 4, and 5 times, then grown in Nutrient Agar media in order to isolate heterotrophic bacteria. The results of the research were analyzed using the identification manual books titled Bergey’s Manual of Determinative Bacteriology, 9th edition and Manual for The Identification of Medical Bacteria, 3rd edition. These manuals show the names of the genus of bacteria in the schmutzdecke layer. On the basis of the identification results from macroscopic, microscopic, and physiological tests, there were 4 dominant genera out of 18 living isolates obtained from the schmutzdecke layer, namely Kurthia gibsonii, Bacillus badius, Bacillus firmus, and Bacillus lentus. The similarity percentage of these 4 isolates was 83%, 81%, 85%, and 77% respectively.
Rocznik
Strony
76--88
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Departement of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
  • Departement of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
  • Departement of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
  • Departement of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java 60115, Indonesia
  • Departement of Botany, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok, Thailand
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Bibliografia
  • 1. Abu Hasan, H., Sai Annanda Shanmugam, D., Sheikh Abdullah, S.R., Muhamad, M.H., Budi Kurniawan, S. 2022. Potential of Using Dual-Media Biofilm Reactors as a Real Coffee Industrial Effluent Pre-Treatment. Water, 14, 2025. https://doi.org/10.3390/w14132025
  • 2. Al-Ajalin, F.A.H., Abdullah, S.R.S., Idris, M., Kurniawan, S.B., Ramli, N.N., Imron, M.F. 2022. Removal of ammonium, phosphate, and COD by bacteria isolated from Lepironia articulata and Scirpus grossus root system. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-022-03926-1
  • 3. Al-Ajalin, F.A.H., Idris, M., Abdullah, S.R.S., Kurniawan, S.B., Imron, M.F. 2020. Evaluation of short-term pilot reed bed performance for real domestic wastewater treatment. Environ. Technol. Innov., 20, 101110. https://doi.org/10.1016/j.eti.2020.101110
  • 4. Bergey, D.H., Holt, J.G. 1994. Bergey’s manual of determinative bacteriology, 9th ed. ed. Baltimore: Williams & Wilkins.
  • 5. Buhari, J., Hasan, H.A., Rahim, N.F.M., Kurniawan, S.B., Abdullah, S.R.S., Othman, A.R. 2022. Unveiling the optimal ammonia-oxidising bacterial consortium for polishing low ammonia-contaminated wastewater. J. Water Process Eng., 47, 102753. https://doi.org/10.1016/j.jwpe.2022.102753
  • 6. Cowan, S.T. 1974. Manual for the identification of medical bacteria, 3rd ed, Cambridge Univ.Press. Cambridge University Press, Cambridge. https://doi.org/10.2105/ajph.55.12.2047-a
  • 7. Fitriani, N., Kusuma, M.N., Wirjodirdjo, B., Hadi, W., Hermana, J., Ni’matuzahroh, Kurniawan, S.B., Abdullah, S.R.S., Mohamed, R.M.S.R. 2020. Performance of geotextile-based slow sand filter media in removing total coli for drinking water treatment using system dynamics modelling. Heliyon, 6. https://doi.org/10.1016/j.heliyon.2020.e04967
  • 8. Gerhardt, P., Wood, W.A., Krieg, N.R., Murray, R. 1994. Methods for General and Molecular Bacteriology, American Society for Microbiology. https://doi.org/10.1002/food.19960400226
  • 9. Harahap, A.W., Helwani, Z., Zultiniar, Y. 2015. Sintesis Hidroksiapatit melalui Precipitated Calcium Carbonate (PCC) Cangkang Kerang Darah dengan Metode Hidrotermal pada Variasi pH dan Waktu Reaksi. Jom FTEKNIK, 2, 1.
  • 10. Ighalo, J.O., Kurniawan, S.B., Iwuozor, K.O., Aniagor, C.O., Ajala, O.J., Oba, S.N., Iwuchukwu, F.U., Ahmadi, S.S., Igwegbe, C.A., 2022. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Saf. Environ. Prot., 157, 37–58. https://doi.org/10.1016/j.psep.2021.11.008
  • 11. Igwegbe, C.A., Obiora-Okafo, I.A., Iwuozor, K.O., Ghosh, S., Kurniawan, S.B., Rangabhashiyam, S., Kanaoujiya, R., Ighalo, J.O., 2022. Treatment technologies for bakers’ yeast production wastewater. Environ. Sci. Pollut. Res., 29, 11004–11026. https://doi.org/10.1007/s11356-021-17992-4
  • 12. Imron, M.F., Kurniawan, S.B., Titah, H.S. 2019. Potential of bacteria isolated from diesel-contaminated seawater in diesel biodegradation. Environ. Technol. Innov. 14, 100368. https://doi.org/10.1016/j.eti.2019.100368
  • 13. Joubert, E.D., Pillay, B. 2008. Visualisation of the microbial colonisation of a slow sand filter using an environmental scanning electron microscope. Electron. J. Biotechnol., 11. https://doi.org/10.2225/vol11-issue2-fulltext-12
  • 14. Kurniawan, S.B., Abdullah, S.R.S., Othman, A.R., Purwanti, I.F., Imron, M.F., Ismail, N. ’Izzati, Ahmad, A., Hasan, H.A., 2021. Isolation and characterisation of bioflocculant-producing bacteria from aquaculture effluent and its performance in treating high turbid water. J. Water Process Eng., 42, 102194. https://doi.org/10.1016/j.jwpe.2021.102194
  • 15. Kurniawan, S.B., Ahmad, A., Imron, M.F., Abdullah, S.R.S., Othman, A.R., Hasan, H.A. 2022a. Potential of microalgae cultivation using nutrient-rich wastewater and harvesting performance by biocoagulants/bioflocculants: Mechanism, multi-conversion of biomass into valuable products, and future challenges. J. Clean. Prod., 365, 132806. https://doi.org/10.1016/j.jclepro.2022.132806
  • 16. Kurniawan, S.B., Imron, M.F., Sługocki, Ł., Nowakowski, K., Ahmad, A., Najiya, D., Abdullah, S.R.S., Othman, A.R., Purwanti, I.F., Hasan, H.A. 2022b. Assessing the effect of multiple variables on the production of bioflocculant by Serratia marcescens: Flocculating activity, kinetics, toxicity, and flocculation mechanism. Sci. Total Environ., 836, 155564. https://doi.org/10.1016/j.scitotenv.2022.155564
  • 17. Kurniawan, S.B., Pambudi, D.S.A., Ahmad, M.M., Alfanda, B.D., Imron, M.F., Abdullah, S.R.S., 2022c. Ecological impacts of ballast water loading and discharge: insight into the toxicity and accumulation of disinfection by-products. Heliyon, 8, e09107. https://doi.org/10.1016/j.heliyon.2022.e09107
  • 18. Law, S.P., Lamb, A.J., Melvin, M., 2001. Visualisation of the establishment of a heterotrophic biofilm within the schmutzdecke of a slow sand filter using scanning electron microscopy. Biofilm J., 6, 1–7.
  • 19. Moideen, S.N.F., Md Din, M.F., Ponraj, M., Mohd Yusof, M.B., Ismail, Z., Songip, A.R., Chelliapan, S., 2016. Wasted cockle shell (Anadara granosa) as a natural adsorbent for treating polluted river water in the fabricated column model (FCM). Desalin. Water Treat., 57, 16395–16403. https://doi.org/10.1080/19443994.2015.1082939
  • 20. Muhamad, M.H., Abdullah, S.R.S., Hasan, H.A., Bakar, S.N.H.A., Kurniawan, S.B., Ismail, N.I. 2021. A hybrid treatment system for water contaminated with pentachlorophenol: Removal performance and bacterial community composition. J. Water Process Eng., 43. https://doi.org/10.1016/j.jwpe.2021.102243
  • 21. Ni’matuzahroh, Fitriani, N., Ardiyanti, P.E., Kuncoro, E.P., Budiyanto, W.D., Isnadina, D.R.M., Wahyudianto, F.E., Radin Mohamed, R.M.S., 2020. Behavior of schmutzdecke with varied filtration rates of slow sand filter to remove total coliforms. Heliyon, 6. https://doi.org/10.1016/j.heliyon.2020.e03736
  • 22. Priest, F.G. 2014. Systematics and Ecology of Bacillus, Bacillus subtilis and Other Gram-Positive Bacteria. Heriot Watt University, Edinburgh. https://doi.org/10.1128/9781555818388.ch1
  • 23. Purwanti, I.F., Kurniawan, S.B., Titah, H.S., Tangahu, B.V., 2018a. Identification of acid and aluminium resistant bacteria isolated from aluminium recycling area. Int. J. Civ. Eng. Technol., 9, 945–954.
  • 24. Purwanti, I.F., Simamora, D., Kurniawan, S.B. 2018b. Toxicity test of tempe industrial wastewater on cyperus rotundus and scirpus grossus. Int. J. Civ. Eng. Technol., 9, 1162–1172.
  • 25. Real, R., Vargas, J.M. 1996. The probabilistic basis of Jaccard’s index of similarity. Syst. Biol., 45, 380–385. https://doi.org/10.1093/sysbio/45.3.380
  • 26. Russell, J.B. 2007. The energy spilling reactions of bacteria and other organisms. J. Mol. Microbiol. Biotechnol., https://doi.org/10.1159/000103591
  • 27. Said, N.S.M., Kurniawan, S.B., Abdullah, S.R.S., Hasan, H.A., Othman, A.R., Ismail, N.I., 2021. Competence of Lepironia articulata in eradicating chemical oxygen demand and ammoniacal nitrogen in coffee processing mill effluent and its potential as green straw. Sci. Total Environ., 799, 149315. https://doi.org/10.1016/j.scitotenv.2021.149315
  • 28. Samayamanthula, D.R., Sabarathinam, C., Bhandary, H. 2019. Treatment and effective utilization of greywater. Appl. Water Sci., 9. https://doi.org/10.1007/s13201-019-0966-0
  • 29. Stackebrandt, E., Keddie, R.M., Jones, D. 2006. The Genus Kurthia. The Prokaryotes, 4, 519–529. https://doi.org/10.1007/0-387-30744-3_15
  • 30. Urfer, D. 2017. Use of bauxite for enhanced removal of bacteria in slow sand filters, Water Science and Technology: Water Supply. Water Science & Technology. https://doi.org/10.2166/ws.2016.199
  • 31. Wulandari, L.K., Bisri, M., Harisuseno, D., Yuliani, E. 2019. Reduction of BOD and COD of by using stratified filter and constructed wetland for blackwater treatment. IOP Conf. Ser. Mater. Sci. Eng., 469. https://doi.org/10.1088/1757-899X/469/1/012024
  • 32. Zhao, Y., Wang, Xiuyan, Liu, C., Wang, S., Wang, Xihua, Hou, H., Wang, J., Li, H. 2019. Purification of harvested rainwater using slow sand filters with low-cost materials: Bacterial community structure and purifying effect. Sci. Total Environ., 674, 344–354. https://doi.org/10.1016/j.scitotenv.2019.03.474
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89cd208a-03e1-4382-be30-c3c04c93de17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.