PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of imperfect interface of anisotropic thermomagnetoelectroelastic bimaterial solids on interaction of thin deformable inclusions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work studies the problem of thermomagnetoelectroelastic anisotropic bimaterial with imperfect high-temperature conducting coherent interface, whose components contain thin inclusions. Using the extended Stroh formalism and complex variable calculus, the Somigliana-type integral formulae and the corresponding boundary integral equations for the anisotropic thermomagnetoelectroelastic bimaterial with high-temperature conducting coherent interface are obtained. These integral equations are introduced into the modified boundary element approach. The numerical analysis of new problems is held and results are presented for single and multiple inclusions.
Rocznik
Strony
242--249
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
  • Bialystok University of Technology, Wiejska Str 45C, 15-351 Bialystok, Poland
  • Ivan Franko National University of Lviv, Universytetska Str. 1, 79000 Lviv, Ukraine
  • Lesya Ukrainka Volyn National University, Potapova Str 9, 43025 Lutsk, Ukraine
Bibliografia
  • 1. Kaessmair S, Javili A, Steinmann P. Thermomechanics of solids with general imperfect coherent interfaces. Archive of Applied Mechanics. 2014;84: 1409-1426. https://doi.org/10.1007/s00419-014-0870-x
  • 2. Benvensite Y. A general interface model for a three-dimensional curved thin anisotropic interphace between two anisotropic media. Journal of the Mechanics and Physics of Solids. 2006;54: 708-734. https://doi.org/10.1016/j.jmps.2005.10.009
  • 3. Pasternak I, Pasternak R, Sulym H. Boundary integral equations and Green’s functions for 2D thermoelectroelastic biomaterial. Engineering Analysis with Boundary Elements. 2014;48: 87-101. https://doi.org/10.1016/j.enganabound.2014.06.010
  • 4. Pasternak I, Pasternak R, Sulym H. 2D boundary element analysis of defective thermoelectroelastic bimaterial with thermally imperfect but mechanically and electrically perfect interface. Engineering Analysis with Boundary Elements. 2015;61: 194-206. https://doi.org/10.1016/j.enganabound.2015.07.012
  • 5. Muskhelishvili NI. Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics. First Edition. Mineola: Dover Publications; 2008.
  • 6. Hwu C. Anisotropic elastic plates. London: Springer; 2010.
  • 7. Ting TC. Anisotropic elasticity: theory and applications. New York: Oxford University Press; 1996.
  • 8. Pasternak I. Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity. Engineering Analysis with Boundary Elements. 2012;36(12): 1931-41. https://doi.org/10.1016/j.enganabound.2012.07.007
  • 9. Pasternak I. Coupled 2D electric and mechanical fields in piezoelectric solids containing cracks and thin inhomogeneities. Engineering Analysis with Boundary Elements. 2011;23: 678-90. https://doi.org/10.1016/j.enganabound.2010.12.001
  • 10. Sulym GT. Bases of the Mathematical Theory of Thermoelastic Equilibrium of Deformable Solids with Thin Inclusions [inUkrainian]. Lviv: Dosl.-Vyd. Tsentr NTSh; 2007.
  • 11. Pan E, Amadei B. Boundary element analysis of fracture mechanics in anisotropic bimaterials. Engineering Analysis with Boundary Elements. 1999;23: 683-91. https://doi.org/10.1016/S0955-7997(99)00018-1
  • 12. Wang X, Pan E. Thermal Green’s functions in plane anisotropic bimaterials with spring-type and Kapitza-type imperfect interface. Acta Mechanica et Automatica. 2010;209: 115-128. https://doi.org/10.1007/s00707-009-0146-7
  • 13. Sladek J, Sladek V, Wuensche M, Zhang, Ch. Analysis of an interface crack between two dissimilar piezoelectric solids. Engineering Fracture Mechanics. 2012;89: 114-27. https://doi.org/10.1016/j.engfracmech.2012.04.032
  • 14. Wang TC, Han XL. Fracture mechanics of piezoelectric materials. International journal fracture mechanics. 1999;98: 15-35. https://doi.org/10.1023/A:1018656606554
  • 15. Qin QH. Green’s function and boundary elements of multifield materials. Oxford: Elsevier Science; 2007.
  • 16. Yang J. Special topics in the theory of piezoelectricity. London: Springer; 2009.
  • 17. Pasternak I, Pasternak R, Sulym H. A comprehensive study on the 2D boundary element method for anisotropic thermoelectroelastic solids with cracks and thin inhomogeneities, Engineering Analysis with Boundary Elements. 2013;37(2): 419-33. https://doi.org/10.1016/j.enganabound.2012.11.002
  • 18. Dunn ML. Micromechanics of coupled electroelastic composites: Effective thermal expansion and pyroelectric coefficients. Journal of Applied Physics. 1993;73: 5131-40. https://doi.org/10.1063/1.353787
  • 19. Berlincourt D, Jaffe H, Shiozawa LR. Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium. Physical Review. 1963;129: 1009-17. https://doi.org/10.1103/PhysRev.129.1009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89cbc324-93a9-4c94-8065-7672624d0665
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.