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Abstract: This work studies the problem of thermomagnetoelectroelastic anisotropic bimaterial with imperfect high-temperature conducting 
coherent interface, whose components contain thin inclusions. Using the extended Stroh formalism and complex variable calculus,  
the Somigliana-type integral formulae and the corresponding boundary integral equations for the anisotropic thermomagnetoelectroelastic 
bimaterial with high-temperature conducting coherent interface are obtained. These integral equations are introduced into the modified 
boundary element approach. The numerical analysis of new problems is held and results are presented for single and multiple inclusions. 
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1. INTRODUCTION 

Pyroelectric, pyromagnetic and multifield material structures 
are widely used in modern engineering design, especially in the 
developed high-tech manufactures, devices of fine mechanics and 
of innovative character. These structures allow combining and 
redistributing the energy of four fields of different physical nature 
(mechanical, thermal, electrical and magnetic), and therefore have 
great potential for use in instrument and sensor systems, preci-
sion positioning devices, energy converters and more. 

The development of such bimaterials can be provided by me-
chanical combination of pyroelectric (ferroelectric) and magneto-
strictive (piezomagnetic) materials. As a result, a thin layer ap-
pears at the interface, which affects the temperature and stress 
fields in a structurally inhomogeneous solid. When modelling the 
effect of this layer, certain boundary conditions of imperfect ther-
mal and magnetoelectromechanical contact of bimaterial compo-
nents are used. Mainly in the scientific literature [1], [2], there are 
two types of imperfect thermal conditions of contact of a thin layer 
with the environment. These are the high- and low-temperature 
conducting. There are also two types of imperfect mechanical 
contact conditions, which are the soft and rigid interfaces. In 
addition, there can be present some other inhomogeneities in the 
structural materials (e.g. cracks, thin inclusions etc.), which can 
also be modelled in conditions of imperfect contact, and they 
should be taken into account. Thus, the development of effective 
methods for modelling and studying the distribution of thermal, 
mechanical, electric and magnetic fields in bimaterial deformable 
solids with an imperfect material interface and internal thin inho-
mogeneities is an important scientific problem with wide possibili-
ties of practical use. 

The study of bimaterial solids with defects is quite widely cov-

ered in the scientific literature. For example, in [13] the authors 
studied three models of interfacial cracks (electrically perfectly 
permeable, semi-permeable and impermeable) in piezoelectric 
materials using the boundary element method. The article [14] 
presents an analysis of problems for cracks in homogeneous 
piezoelectrics and at the interface of two different piezoelectric 
materials; the corresponding explicit analytical solutions are ob-
tained. In [2] author uses specially designed conditions at the 
material boundary to model the contact surface between two 
anisotropic materials. Pan and Amadei in [11] developed an effec-
tive boundary-element approach to solving problems for elastic 
anisotropic bimaterial solids containing cracks and thin inclusions. 
Wang and Pan [12] constructed Green's functions for an aniso-
tropic thermoelastic bimaterial with a Kapitza-type interface. 

An effective method for solving thermomagnetoelectroelastic 
problems for bimaterials is an approach based on the methods of 
complex variable calculus and the Stroh formalism. It is widely 
used in the analysis of anisotropic [6], [7], piezoelectric [7], [15], 
[16] and magnetoelectroelastic [15] solids with through cracks and 
inclusions. In [3], [4], boundary integral Somilliana-type equations 
for the boundary-element analysis of anisotropic thermomagne-
toelectroelastic bimaterial with holes, cracks and thin inclusions 
are obtained. 

This paper expands the possibilities of the Stroh formalism-
based approach for a thermomagnetoelectroelastic bimaterial 
solid with a high-temperature conducting interface and perfect 
magnetoelectromechanical contact of components that may con-
tain thin inclusions sensitive to the influence of fields of different 
nature. An appropriate mathematical model has been developed. 
Also, there were obtained integral equations of the Somilliana-
type and solved a number of problems for single and interacting 
inclusions. 
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2. GOVERNING EQUATIONS  
OF THERMOMAGNETOELECTROELASTICITY 

Consider a piecewise homogeneous anisotropic linear ther-
momagnetoelectroelastic medium in the reference coordinate 
system 𝑂𝑥1𝑥2𝑥3. According to [6], [7] and [8], the balance equa-
tions for stress, electric displacement, magnetic induction and 
heat flux, as well as constitutive relations can be expressed using 
the complex variable calculus. The extended Stroh formalism 
allows to write the general solution of these equations through 

certain analytical functions 𝑓(𝑧) and 𝑔(𝑧) as 

𝜃 = 2Re{𝑔′(𝑧𝑡)}, 𝜗 = 2𝑘𝑡Im{𝑔′(𝑧𝑡)}; 

�̃� = 2Re[𝐀𝐟(𝑧∗) + 𝐜𝑔(𝑧𝑡)], �̃� = 2Re[𝐁𝐟(𝑧∗) + 𝐝𝑔(𝑧𝑡)]; 

�̃�𝑖 = 𝑢𝑖 , �̃�4 = 𝜙, �̃�5 = 𝜓; �̃�𝑖𝑗 = 𝜎𝑖𝑗 , �̃�4𝑗 = 𝐷𝑗 , �̃�5𝑗 = 𝐵𝑗  (𝑖 = 1,2,3) 

�̃�𝑖1 = −�̃�𝑖,2, �̃�𝑖2 = �̃�𝑖,1; 𝑧𝑡 = 𝑥1 + 𝑝𝑡𝑥2, 𝑧𝛼 = 𝑥1 + 𝑝𝛼𝑥2;  (1) 

ℎ1 = −𝜗,2, ℎ2 = 𝜗,1; 𝑘𝑡 = √𝑘11𝑘22 − 𝑘12
2, 

𝐟(𝑧∗) = [𝐹1(𝑧1), 𝐹2(𝑧2), 𝐹3(𝑧3)]T, 

where 𝜎𝑖𝑗  is a stress tensor; 𝑢𝑖 
is a displacement vector; ℎ𝑖 is 

heat flux; 𝐷𝑖  is electric displacement; 𝐵𝑖  is magnetic induction; 𝑞 

is a density of free charges; 𝑓𝑖 is the body force; 𝑓ℎ is the density 

of distributed heat; 𝜙 and  𝜓 are electric and magnetic potentials; 
𝜃 is a change of temperature with respect to the reference one; 

𝑘𝑖𝑗  are thermal conductivity coefficients; 𝜗 is heat flow function; 

𝐟(𝑧) is a vector of Stroh complex potentials; 𝑔(𝑧) is a tempera-
ture potential; 𝐹𝛼(𝑧𝛼) are certain analytical functions; and 𝑝𝑡  is a 
complex constant (with a positive imaginary part), which is the 
root of the characteristic equation of thermal conductivity  
𝑘22𝑝𝑡

2 + 2𝑘12𝑝𝑡 + 𝑘11 = 0. 
Matrices 𝐀 ≡ [𝐴𝑖𝛼] = [𝐚𝛼], 𝐁 ≡ [𝑏𝑖𝛼] = [𝐛𝛼], constants 

𝑝𝛼(𝛼 = 1, … ,5) and vectors 𝐜 and 𝐛 are determined from the 
eigenvalue problem of the Stroh formalism [6] on the basis of 
elastic, piezoelectric, dielectric and piezomagnetic constants of 
the material. 

The Stroh complex potentials, the vector-functions of dis-
placement and stress are related by the following equations [7] : 

𝐟(𝑧∗) = 𝐁T𝐮 + 𝐀T𝛗 − 𝐁T𝐮𝑡 − 𝐀T𝛗𝑡 ,

𝐮𝑡 = 2Re{𝐜𝑔(𝑧𝑡)}, 𝛗𝑡 = 2Re{𝐝𝑔(𝑧𝑡)}.
 (2) 

Function 𝑔′(𝑧𝑡), temperature and heat flux function are related 
as 

𝑔′(𝑧𝑡) =
1

2
(𝜃 + 𝑖

𝜗

𝑘𝑡
). (3) 

3. FORMULATION OF THE PROBLEM 

Consider the problem of thermal conductivity and deformation 
for an anisotropic thermomagnetoelectroelastic bimaterial medium 
with inclusions. It consists of two thermomagnetoelectroelastic 
anisotropic half-spaces, which are separated by a surface 𝑥2 = 0 

and contains cylindrical holes parallel to the 𝑥3 axis on the sur-
face of which arbitrary independent mechanical and thermal 
boundary conditions are given (Fig.1). In this case, it suffices to 
consider the temperature and thermomagnetoelectroelastic state 

in an arbitrary cross-section 𝐾 which is perpendicular to 𝑥3. 

 
Fig. 1. Geometric scheme of a plane problem  
            for a thermomagnetoelectroelastic anisotropic bimaterial medium 

At the interface, the conditions of imperfect thermal contact in 
the form of a high-temperature conducting interface 

 𝜗(1)(𝑥1, 𝑥2)|𝑥2=0 = 𝜗(𝑥1) + 𝜇0𝜃,1(𝑥1), 𝜇0 = 2ℎ𝑖𝑛𝑡𝑘22
𝑖𝑛𝑡, 

𝜗(2)(𝑥1, 𝑥2)|𝑥2=0 = 𝜗(𝑥1),  (4) 

𝜃(1)(𝑥1, 𝑥2)|𝑥2=0 = 𝜃(2)(𝑥1, 𝑥2)|𝑥2=0 = 𝜃(𝑥1), ∀𝑥2 = 0; (5) 

and the conditions of perfect magnetoelectromechanical contact 
of components are given 

�̃�(1)(𝑥1, 𝑥2)|𝑥2=0 = �̃�(2)(𝑥1, 𝑥2)|𝑥2=0 = �̃�(𝑥1), (6) 

�̃�(1)(𝑥1, 𝑥2)|𝑥2=0 = �̃�(2)(𝑥1, 𝑥2)|𝑥2=0 = �̃�(𝑥1), ∀𝑥2 = 0. (7) 

Here, superscripts 1 and 2 are used to denote the values of 

the fields acting in half-spaces 𝑆1 and 𝑆2, respectively. A thin 
intermediate layer is removed from consideration. Each half-space 

contains a system of smooth closed contours Γ1 = ⋃ Γ𝑖
(1)

𝑖  and 

Γ2 = ⋃ Γ𝑖
(2)

𝑖 . On them, it is possible to set various thermal or 

mechanical boundary conditions. 
To derive the integral formulas for the Stroh complex poten-

tials, we use the Cauchy integral formula [5]: 

1

2𝜋𝑖
∫

𝜙(𝜏)𝑑𝜏

𝜏−𝑧𝜕𝑆
= {

𝜙(𝑧) ∀𝑧 ∈ 𝑆,
   0    ∀𝑧 ∉ 𝑆.

 (8) 

It outlines the relationship between the values of an arbitrary 
complex function (analytic in 𝑧 ∈ 𝑆) at the boundary 𝜕𝑆 of the 

domain 𝑆 outside and inside it. The function 𝜙(𝑧) is assumed to 

have no poles in 𝑧 ∈ 𝑆. Here 𝜏, 𝑧 ∈ ℂ are complex variables that 
characterise the location of the source points and the field, re-

spectively. Also, in Eq. (8) it is assumed that when the domain 𝑆 

is infinite, then the function 𝜙(𝜏) should vanish at 𝑧 → ∞. 

4. DERIVATION OF INTEGRAL REPRESENTATIONS  
FOR BIMATERIAL WITH IMPERFECT THERMAL 
CONTACT OF COMPONENTS 

4.1. Thermal conductivity 

The problem of thermal conductivity is linear. Its solution can 
be represented as a superposition of homogeneous and perturbed 

solutions. Homogeneous solutions 𝑔1∞(𝑧𝑡
(1)

) and 𝑔2∞(𝑧𝑡
(2)

) 

satisfy Eq. (3). The perturbed solutions are caused by the pres-

ence of contours Γ1 and Γ2 and certain boundary conditions set 
on them.  
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Let us write the Cauchy formulas for the components of the 
bimaterial as follows: 

∀Im (𝑧𝑡
(1)

) > 0, 

𝑔1
′ (𝑧𝑡

(1)
) =

1

2𝜋𝑖
∫

𝑔1
′ (𝜏𝑡

(1)
)𝑑𝜏𝑡

(1)

𝜏𝑡
(1)

−𝑧𝑡
(1)𝛤

+
1

2𝜋𝑖
∫

𝑔1
′ (𝑥1)𝑑𝑥1

𝑥1−𝑧𝑡
(1)

∞

−∞
,  (9.1) 

∀Im (𝑧𝑡
(2)

) < 0, 

𝑔2
′ (𝑧𝑡

(2)
) =

1

2𝜋𝑖
∫

𝑔2
′ (𝜏𝑡

(2)
)𝑑𝜏𝑡

(2)

𝜏𝑡
(2)

−𝑧𝑡
(2)𝛤

+
1

2𝜋𝑖
∫

𝑔2
′ (𝑥1)𝑑𝑥1

𝑥1−𝑧𝑡
(2)

∞

−∞
. (9.2) 

Using the conditions of imperfect thermal contact, Eq. (3) can 
be written as 

𝑔1
′ (𝑥1) =

1

2𝜋
(𝜃(𝑥1) +

𝑖

𝑘𝑡
(1) 𝜗(𝑥1) +

𝑖𝜇0

𝑘𝑡
(1) 𝜃,1(𝑥1)); (9.3) 

𝑔2
′ (𝑥1) =

1

2𝜋
(𝜃(𝑥1) +

𝑖

𝑘𝑡
(2) 𝜗(𝑥1)).  (9.4) 

Thus, we substitute now Eqs (9.3) and (9.4) into Eqs (9.1) and 
(9.2), respectively 

𝑔1
′ (𝑧𝑡

(1)
) =

1

2𝜋𝑖
∫

𝑔1
′ (𝜏𝑡

(1)
)𝑑𝜏𝑡

(1)

𝜏𝑡
(1)

−𝑧𝑡
(1)𝛤

+
1

2𝜋𝑖
(

1

2
∫

𝜃(𝑥1)𝑑𝑥1

𝑥1−𝑧𝑡
(1)

∞

−∞
+

𝑖

2𝑘𝑡
(1) ∫

𝜗(𝑥1)𝑑𝑥1

𝑥1−𝑧𝑡
(1)

∞

−∞
+

𝑖

2𝑘𝑡
(1) ∫

𝜇0𝜃,1(𝑥1)𝑑𝑥1

𝑥1−𝑧𝑡
(1)

∞

−∞
); 

𝑔2
′ (𝑧𝑡

(2)
) =

1

2𝜋𝑖
∫

𝑔2
′ (𝜏𝑡

(2)
)𝑑𝜏𝑡

(2)

𝜏𝑡
(2)

−𝑧𝑡
(2)𝛤

+
1

2𝜋𝑖
(

1

2
∫

𝜃(𝑥1)𝑑𝑥1

𝑥1−𝑧𝑡
(2)

∞

−∞
+

𝑖

2𝑘𝑡
(2) ∫

𝜗(𝑥1)𝑑𝑥1

𝑥1−𝑧𝑡
(2)

∞

−∞
).  

Excluding integrals along the interface of half-spaces we ob-
tain 

𝑔1
′ (𝑧𝑡

(1)
) =

1

2𝜋𝑖
[𝑞𝑡

(1)
(𝑧𝑡

(1)
) + �̅�𝑡

(1)
(𝑧𝑡

(1)
) −

(1+𝐾)

𝛽1
�̅�𝑡

(1)
(𝛽1; 𝑧𝑡

(1)
)  

+
(1−𝐾)

𝛽1
𝑒𝑡

(2)
(𝛽1; 𝑧𝑡

(1)
)].  (10) 

𝑔2
′ (𝑧𝑡

(2)
) =

1

2𝜋𝑖
[𝑞𝑡

(2)
(𝑧𝑡

(2)
) + �̅�𝑡

(2)
(𝑧𝑡

(2)
) +

(1+𝐾)

𝛽2
𝑒𝑡

(1)
(𝛽2; 𝑧𝑡

(2)
)  

−
(1−𝐾)

𝛽1
�̅�𝑡

(2)
(𝛽2; 𝑧𝑡

(2)
)].  (11) 

Here 

𝑞𝑡
(𝑖)

(𝑧𝑡
(𝑗)

) = ∫
𝑔𝑖

′(𝜏𝑡
(𝑖)

)𝑑𝜏𝑡
(𝑖)

𝜏𝑡
(𝑖)

−𝑧𝑡
(𝑗)Γ𝑖

, �̅�𝑡
(𝑖)

(𝑧𝑡
(𝑗)

) = ∫
𝑔𝑖

′(𝜏𝑡
(𝑖)

)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑�̅�𝑡
(𝑖)

�̅�𝑡
(𝑖)

−𝑧𝑡
(𝑗)Γ𝑖

. 

𝐾 =
𝑘𝑡

(1)
−𝑘𝑡

(2)

𝑘𝑡
(1)

+𝑘𝑡
(2); 

1

𝑘𝑡
(1)

+𝑘𝑡
(2) =

1+𝐾

2𝑘𝑡
(1) =

1−𝐾

2𝑘𝑡
(2); 

𝛽1 = −
𝑖𝜇0(1+𝐾)

2𝑘𝑡
(1) , 𝛽2 =

𝑖𝜇0(1−𝐾)

2𝑘𝑡
(2) . (12) 

𝑒𝑡
(𝑘)

(𝛼𝑖; 𝑧𝑡
(𝑗)

) = 𝑒
−

𝑧𝑡
(𝑗)

𝛼𝑖 ∫ 𝑒
𝑧𝑡

(𝑗)

𝛼𝑖 𝑞𝑡
(𝑘)

(𝑧𝑡
(𝑗)

) 𝑑𝑧𝑡
(𝑗)

;  

�̅�𝑡
(𝑘)

(𝛼𝑖; 𝑧𝑡
(𝑗)

) = 𝑒
−

𝑧𝑡
(𝑗)

𝛼𝑖 ∫ 𝑒
𝑧𝑡

(𝑗)

𝛼𝑖 �̅�𝑡
(𝑘)

(𝑧𝑡
(𝑗)

) 𝑑𝑧𝑡
(𝑗)

.  

Thus, there are obtained integral representation for the tem-

perature and heat flux at any point 𝛏 bimaterial 

𝜃(𝛏) = {
2Re {𝑔1

′ (𝑍𝑡
(1)

(𝛏))} (∀𝛏 ∈ 𝑆1),

2Re {𝑔2
′ (𝑍𝑡

(2)
(𝛏))} (∀𝛏 ∈ 𝑆2)

=  

= ∫ [ΘHCI∗(𝐱, 𝛏)ℎ𝑛(𝐱) − HHCI∗(𝐱, ξ)𝜃(𝐱)]𝑑𝑠(𝐱)
Γ

+ 𝜃∞(𝛏); (13) 

ℎ(𝛏) = {
2𝑘𝑡

(1)
Im {(𝛿2𝑖 − 𝛿1𝑖𝑝𝑡

(1)
) 𝑔1

′′ (𝑍𝑡
(1)

(𝛏))} (∀𝛏 ∈ 𝑆1),

2𝑘𝑡
(2)

Im {(𝛿2𝑖 − 𝛿1𝑖𝑝𝑡
(2)

) 𝑔2
′′ (𝑍𝑡

(2)
(𝛏))} (∀𝛏 ∈ 𝑆2)

=  

= ∫ Θ𝑖
HCI∗∗(𝐱, 𝛏)ℎ𝑛(𝐱)𝑑𝛤(𝐱)

Γ
− ∫ H𝑖

HCI∗∗(𝐱, 𝛏)𝜃(𝐱)𝑑𝑠(𝐱)
Γ

+

+ ℎ𝑖
∞(𝛏).  (14) 

The functions 𝜃∞(𝛏) and ℎ𝑖
∞(𝛏) are homogeneous solutions 

for the bimaterial 

𝜃∞(𝛏) = {
2Re {𝑔1∞

′ (𝑍𝑡
(1)

(𝛏))} (∀𝛏 ∈ 𝑆1),

2Re {𝑔2∞
′ (𝑍𝑡

(2)
(𝛏))} (∀𝛏 ∈ 𝑆2);

   

ℎ𝑖
∞(𝛏) = {

2𝑘𝑡
(1)

Im {(𝛿2𝑖 − 𝛿1𝑖𝑝𝑡
(1)

) 𝑔1∞
′′ (𝑍𝑡

(1)
(𝛏))} (∀𝛏 ∈ 𝑆1),

2𝑘𝑡
(2)

Im {(𝛿2𝑖 − 𝛿1𝑖𝑝𝑡
(2)

) 𝑔2∞
′′ (𝑍𝑡

(2)
(𝛏))} (∀𝛏 ∈ 𝑆2).

    

4.2. Thermomagnetoelectric elasticity 

Using Eq. (8), we write the Cauchy integral formula for vectors 

𝐟(1)(𝑧∗
(1)

) and 𝐟(2)(𝑧∗
(2)

) of Stroh complex potentials which are 

analytical functions in 𝑆1 and 𝑆2, respectively  

𝐟(1) (𝑧∗
(1)

) =
1

2𝜋𝑖
[∫ 〈

𝑑𝜏∗
(1)

𝜏∗
(1)

−𝑧∗
(1)〉Γ𝑖

𝐟(1) (𝜏∗
(1)

) +

∫ 〈
𝑑𝑥1

𝑥1−𝑧∗
(1)〉

∞

−∞
𝐟(1)(𝑥1)], 

𝐟(2) (𝑧∗
(2)

) =
1

2𝜋𝑖
[∫ 〈

𝑑𝜏∗
(2)

𝜏∗
(2)

−𝑧∗
(1)〉Γ𝑖

𝐟(2) (𝜏∗
(2)

) +

∫ 〈
𝑑𝑥1

𝑥1−𝑧∗
(2)〉

∞

−∞
𝐟(2)(𝑥1)]. 

Introducing notation 

𝐪𝑗 (𝑧𝛽
(𝑖)

) = ∫ 〈
𝑑𝜏∗

(𝑗)

𝜏∗
(𝑗)

−𝑧𝛽
(𝑖)〉Γ𝑖

𝐟(𝑗) (𝜏∗
(𝑗)

), 

�̅�𝑗 (𝑧𝛽
(𝑖)

) = ∫ 〈
𝑑�̅�∗

(𝑗)

�̅�∗
(𝑗)

−𝑧
𝛽
(𝑖)〉Γ𝑖

𝐟̅(𝑗) (𝜏∗
(𝑗)

), (15) 

we rewrite them in the form of 

𝐟(1) (𝑧∗
(1)

) =
1

2𝜋𝑖
[𝐪1 (𝑧∗

(1)
) + ∫ 〈

𝑑𝑥1

𝑥1−𝑧∗
(1)〉

∞

−∞
𝐟(1)(𝑥1)], 

0 = �̅�1 (𝑧∗
(1)

) + ∫ 〈
1

𝑥1−𝑧∗
(1)〉

∞

−∞
𝐟̅(1)(𝑥1)𝑑𝑥1,

0 = 𝐪1 (𝑧∗
(2)

) + ∫ 〈
1

𝑥1−𝑧∗
(2)〉

∞

−∞
𝐟(1)(𝑥1)𝑑𝑥1;

 (16) 

𝐟(2) (𝑧∗
(2)

) =
1

2𝜋𝑖
[𝐪2 (𝑧∗

(2)
) + ∫ 〈

1

𝑥1−𝑧∗
(2)〉

∞

−∞
𝐟(2)(𝑥1)𝑑𝑥1], 

0 = �̅�2 (𝑧∗
(2)

) − ∫ 〈
1

𝑥1−𝑧∗
(2)〉

∞

−∞
𝐟̅(2)(𝑥1)𝑑𝑥1,

0 = 𝐪2 (𝑧∗
(1)

) − ∫ 〈
1

𝑥1−𝑧∗
(1)〉

∞

−∞
𝐟(2)(𝑥1)𝑑𝑥1.

 (17) 

Excluding from Eqs (16) and (17) integrals along the interface 
of half-spaces using the Stroh orthogonality conditions we obtain 

𝐟(1) (𝑧∗
(1)

) =
1

2𝜋𝑖
[𝐪1 (𝑧∗

(1)
) + ∑ 𝐈𝛽 (𝐆1

(1)
�̅�1 (𝑧𝛽

(1)
)5

𝛽=1 +

 𝐆2
(1)

𝐪2 (𝑧𝛽
(1)

)) + 〈�̅�𝑡
(1)

(𝑧𝑡
(1)

)〉 𝛅1
(1)

+ 〈𝑄𝑡
(2)

(𝑧𝑡
(1)

)〉 𝛅2
(1)

+

〈�̅�𝑡
(1)

(𝛽1; 𝑧𝑡
(1)

)〉 𝐗1
(1)

+ 〈𝑒𝑡
(2)

(𝛽1; 𝑧𝑡
(1)

)〉 𝐗2
(1)

 ]. (18) 
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Here  

𝐗1
(1)

= −𝛅1
(1)

− 2𝑖𝑘𝑡
(1)

(𝐆1
(1)

�̅�1 − 𝛍1), 

𝐗2
(1)

= −𝛅2
(1)

+ 2𝑖𝑘𝑡
(2)

(𝐆2
(1)

𝛍2). 

𝛅1
(1)

= −(1 + 𝐾) (𝐆2
(1)

𝜆2 − 𝐆1
(1)

�̅�1 − 𝜆1) + 𝑖𝑘𝑡
(2)(1 +

𝐾) (𝐆2
(1)

𝜇2 − 𝐆1
(1)

�̅�1 − 𝜇1),  

𝛅2
(1)

= (1 − 𝐾) (𝐆2
(1)

𝜆𝟐 − 𝐆1
(1)

�̅�1 − 𝜆1) + 𝑖𝑘𝑡
(2)(1 +

𝐾) (𝐆2
(1)

𝜇2 − 𝐆1
(1)

�̅�1 − 𝜇1).  

𝐆1
(1)

= −[𝐀1
T(�̅�1�̅�1

−1 − 𝐀2𝐁2
−1)−T�̅�1

−T + 𝐁1
T(�̅�1�̅�1

−1 −

𝐁2𝐀2
−1)−T�̅�1

−T], 

𝐆2
(1)

= −[𝐀1
T(�̅�1�̅�1

−1 − 𝐀2𝐁2
−1)−T�̅�2

−T + 𝐁1
T(�̅�1�̅�1

−1 −

𝐁2𝐀2
−1)−T�̅�2

−T]. 

𝐟(2) (𝑧∗
(2)

) =
1

2𝜋𝑖
[𝐪2 (𝑧∗

(2)
) + ∑ 𝐈𝛽 (𝐆1

(2)
𝐪1 (𝑧𝛽

(2)
)5

𝛽=1 +

 𝐆2
(2)

�̅�2 (𝑧𝛽
(2)

)) + 〈𝑄𝑡
(1)

(𝑧𝑡
(2)

)〉 𝛅1
(2)

+ 〈�̅�𝑡
(2)

(𝑧𝑡
(2)

)〉 𝛅2
(2)

+

〈𝑒𝑡
(1)

(𝛽2; 𝑧𝑡
(2)

)〉 𝐗1
(2)

+ 〈�̅�𝑡
(2)

(𝛽2; 𝑧𝑡
(2)

)〉 𝐗2
(2)

 ].  (19) 

and 

𝐗1
(2)

= −𝛅1
(2)

− 2𝑖𝑘𝑡
(1)

𝐆2
(2)

𝛍1, 

𝐗2
(2)

= −𝛅1
(1)

+ 2𝑖𝑘𝑡
(2)

(𝐆2
(2)

�̅�2 − 𝛍2). 

𝛅1
(2)

= −(1 + 𝐾) (𝐆1
(2)

𝜆1 − 𝐆2
(2)

�̅�2 + 𝜆2) − 𝑖𝑘𝑡
(2)(1 +

𝐾) (𝐆1
(2)

𝜇1 − 𝐆2
(2)

�̅�2 + 𝜇2), 

𝛅2
(2)

= (1 − 𝐾) (𝐆1
(2)

𝜆1 − 𝐆2
(2)

�̅�2 + 𝜆2) − 𝑖𝑘𝑡
(2)(1 +

𝐾) (𝐆1
(2)

𝜇1 − 𝐆2
(2)

�̅�2 + 𝜇2). 

𝐆1
(2)

= −[𝐀2
T(𝐀1𝐁1

−1 − �̅�2�̅�2
−1)−T𝐁1

−T + 𝐁2
T(𝐁1𝐀1

−1 −

�̅�2�̅�2
−1)−T𝐀1

−T], 

𝐆2
(2)

= −[𝐀2
T(𝐀1𝐁1

−1 − �̅�2�̅�2
−1)−T�̅�2

−T + 𝐁2
T(𝐁1𝐀1

−1 −

�̅�2�̅�2
−1)−T�̅�2

−T]. 

The obtained  (18) and (19) allow to write integral relations 
that relate the displacements at an arbitrary point of the thermo-
magnetoelectroelastic bimaterial with temperature, heat flux and 

displacement and traction on the contours i : 

𝐮(𝛏) = {
2Re {𝐀1𝐟(1) (𝑍∗

(1)
(𝛏)) + 𝐜1𝑔1 (𝑍𝑡

(1)
(𝛏))} (∀𝛏 ∈ 𝑆1),

2Re {𝐀2𝐟(2) (𝑍∗
(2)

(𝛏)) + 𝐜2𝑔2 (𝑍𝑡
(2)

(𝛏))} (∀𝛏 ∈ 𝑆2)
= 

= 𝐮∞(𝛏) + ∫ [
Γ

𝐔bm(𝐱, 𝛏)𝐭(𝐱) − 𝐓bm(𝐱, 𝛏)𝐮(𝐱) +

+𝐫HCI(𝐱, 𝛏)𝜃(𝐱) + 𝐯HCI(𝐱, 𝛏)ℎ𝑛(𝐱)]𝑑𝑠(𝐱), (20) 

Also, using Eqs (18) and (19) it is possible to write similar ex-
pressions to determine the stress in an arbitrary point of thermo-
magnetoelectroelastic bimaterial 

𝛔𝑗(𝛏) = {
2Re{𝐁1(𝛿2𝑗 − 𝛿1𝑗𝑝∗

(1)
)𝐟′(𝑍∗

(1)
(𝛏)) + 

2Re{𝐁2(𝛿2𝑗 − 𝛿1𝑗𝑝∗
(2)

)𝐟′(𝑍∗
(2)

(𝛏)) +
  

+𝐝1(𝛿2𝑗 − 𝛿1𝑗𝑝𝑡
(1)

)𝑔1
′ (𝑍𝑡

(1)
(𝛏))}, (∀𝛏 ∈ 𝑆1)

+𝐝2(𝛿2𝑗 − 𝛿1𝑗𝑝𝑡
(2)

)𝑔2
′ (𝑍𝑡

(2)
(𝛏))}, (∀𝛏 ∈ 𝑆2)

= (21) 

= 𝝈𝒋
∞(𝛏) + ∫ [

Γ
𝐃𝑗

bm(𝐱, 𝛏)𝐭(𝐱)𝑑𝑠(𝐱) − 𝐒𝑗
bm(𝐱, 𝛏)𝐮(𝐱) +

+𝐪𝑗
HCI(𝐱, 𝛏)𝜃(𝐱)𝑑𝑠(𝐱) + 𝐰𝑗

HCI(𝐱, 𝛏)ℎ𝑛(𝐱)𝑑𝑠(𝐱)]𝑑𝑠(𝐱).  

According to [10], stress and displacement discontinuities in 
the vicinity of tips of thin inhomogeneities are characterised by 
generalised stress, electric displacements and magnetic induction 
intensity factors. They are determined by the discontinuity func-
tions at the tip of inhomogeneity by formulas 

�̃�(1) = lim𝑠→0 √
𝜋

8𝑠
𝐋 ∙ ∆�̃�(𝑠); �̃�(2) = − lim𝑠→0 √

𝜋𝑠

2
Σ�̃�(𝑠), 

where �̃�(1) = [𝐾21, 𝐾11, 𝐾31, 𝐾41, 𝐾51], 

�̃�(2) = [𝐾12
(2)

, 𝐾22
(2)

, 𝐾32, 𝐾42, 𝐾52] – are the vectors of general-

ised stress and electric displacement intensity factors; 𝐋 =

−2√−1𝐁𝐁T– the real tensor Burnett–Lotte [9]. The first two 

components 𝐾12
(2)

, 𝐾22
(2)

 of the vector �̃�(2) differ from generalised 

SIFs 𝐾12, 𝐾22, which are introduced for purely elastic problems. 

To find 𝐾12, 𝐾22, through �̃�(2) we need to use the formula 

𝑘𝑖
(2)

= 𝑆𝑗𝑖�̃�𝑗
(2)

 (𝑖 = 1,2; 𝑗 = 1, … ,5). 

Here 𝐤(2) = [𝐾22, 𝐾12]T – the vector of generalised SIF; 

𝐒 = √−1(𝟐𝐀𝐁T − 𝐈) – the second real Burnett–Lotte tensor 
[9]. 

Generalised heat flux intensity factors are defined as 

𝐾ℎ1 = − lim𝑠→0 √
𝜋

8𝑠
𝑘𝑡 ∙ ∆𝜃(𝑠) ; 𝐾ℎ2 = − lim𝑠→0 √

𝜋𝑠

2
Σℎ𝑛(𝑠). 

Fields of displacements, stresses, temperatures and heat flux 
in the vicinity of the inclusion tip are fully characterised by general-
ised stress and electric displacement intensity factors and are 
defined by the following relationships: 

�̃�(𝛏) = √
2

𝜋
Im{𝐀〈√𝑍∗〉(√−1𝐁−1�̃�(1) − 2𝐀T �̃�(2))}, 

�̃�(𝛏) = √
2

𝜋
Im{𝐁〈√𝑍∗〉(√−1𝐁−1�̃�(1) − 2𝐀T �̃�(2))}; 

𝜃 =
1

𝑘𝑡
√

2

𝜋
Im{(𝐾ℎ1 + √−1𝐾ℎ2)√𝑍𝑡}, 

𝜗 = √
2

𝜋
Im{(√−1𝐾ℎ1 − 𝐾ℎ2)√𝑍𝑡}. 

5. NUMERICAL EXAMPLES 

The obtained integral equations are introduced into the 
scheme of the modified boundary elements method [17]. To solve 
them, the curves Γ = ⋃ Γ𝑗𝑗  are approximated using 𝑛 rectilinear 

segments (boundary elements) Γ𝑞. At each element, three nodal 

points are set: one at the centre, and two others at the distance of 
1

3
 of element length at both sides of a central node (discontinuous 

three-node boundary element; if the polynomial shape functions 
are used it is called the discontinuous quadratic boundary element 
[7]). The boundary functions of temperature, heat flux, displace-
ment and stress are approximated at the element using their 
nodal values. This allows solving specific two-dimensional prob-
lems of thermomagnetoelectroelasticity for bimaterial solids with 
imperfect thermal contact of its components in the presence of 
inhomogeneities inside them.  

Example 1. To verify the proposed numerical method, con-
sider a test problem for finite square solid with elementary load 
given on its faces, which has analytic solution. To proceed with 
this, let us cut out a square from the upper half-space of a bimate-
rial solid with high-temperature conducting interface, and consider 
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the prismatic body of a square cross section. To model the latter, 
we used only 40 boundary elements. The lower boundary of the 
body is at a distance r to the interface (Fig. 2). On the upper 

boundary of the body it is given a temperature 𝜃0. 

 

Fig. 2. Cross-sectional scheme of a thermoelastic anisotropic  
  square body  

Let us check the influence of the high-temperature conducting 
interface on the temperature distribution in a given finite solid. To 

do this, let us fix the coordinate 𝑥 = 𝑥0 (𝑥0 ∈ [−
𝑊

2
;

𝑊

2
]) and 

find the temperature value at the points 𝑦 = 𝑦0 + 𝑟(𝑦0 ∈
[0; 𝐻]). The obtained plot shows that the temperature change is 
a linear function of coordinate, which is the exact analytic solution 
of the problem. Moreover, if one changes 𝑥0 the resulting plot 
does not change, which also verifies the developed boundary 
element approach. 

Now let us cut out the same prismatic body, with the same 
conditions, from the lower half-space. As in the previous case, we 

fix coordinate 𝑥 = 𝑥0 (𝑥0 ∈ [−
𝑊

2
;

𝑊

2
]) and calculate the 

temperature value at points 𝑦 = 𝑦0 − 𝑟(𝑦0 ∈ [−𝐻; 0]). The 
obtained schedule of temperature change is identical to the 
previous one, which also verifies the obtained kernels of boundary 
integral equations. 

It should also be noted that the change in thermal conductivity 
of the interface does not change the temperature in these bodies. 
It is obvious in this case (homogeneous material) that the high 
thermal conductivity interface does not affect the temperature 
distribution in the considered finite prismatic bodies, which further 
verifies the obtained integral formulas and developed computa-
tional programs. 

Example 2 Finally, consider the problem where the interface 

crosses the square solid (𝑊 = 𝐻), as shown in Fig. 3. The prop-
erties of the materials are the same as in the previous example. 

On the upper boundary of the solid, for 𝑦 =
𝐻

2
 the temperature is 

set as follows: 𝜃 = 4𝑥2 𝑊2⁄ , 𝑥 ∈ [−
𝑊

2
;

𝑊

2
].On the bottom 

boundary of the cut out square a temperature 𝜃0 = 0 is given. At 
the interface, the conditions of imperfect thermal contact in the 
form of a high-temperature conducting interface, Eqs (4) and (5), 
are satisfied. 

In addition to the boundary elements method, another 
approach was used to solve the problem for their mutual 
verification.  

 
Fig. 3. Sketch of a thermoelastic anisotropic square solid with HCI 

 

Fig. 4. Temperature change in the cross section of a square body  
  with HCI  

This approach is based on the Stroh formalism. The complex 
potentials (3) for a square solid with high-temperature conducting 
interface can be taken as the following finite sums of Laurent 
series, which are analytic in the selected domain 

𝑔1
′ (𝑧𝑡) = ∑ 𝐶𝑘

(1)
𝑧𝑡

𝑘𝑁
𝑘=0 , 𝑦 > 0;

𝑔2
′ (𝑧𝑡) = ∑ 𝐶𝑘

(2)
𝑧𝑡

𝑘𝑁
𝑘=0 , 𝑦 < 0.

  (22) 

Here N is the number of terms. Utilising interface conditions 

(4) and (5) one can easily find the dependence between 𝐶𝑘
(1)

 and 

𝐶𝑘
(2)

. After this these coefficients are determined in the following 

way. First, one computes the sum of squares of difference 
between given boundary conditions and temperature or heat flux 
obtained in Eq. (22) in a set of 𝑀 points at the boundary of the 
square solid. Then this functional is minimised as in the least 

square approach to determine 𝐶𝑘
(1)

 and 𝐶𝑘
(2)

. Thus, the complex 

potentials (22) are obtained explicitly. Using Eqs (1) and (22) it is 
then easy to plot temperature change in the cross-section of a 
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square solid depending on the distance to the interface (for 

instance, Fig. 4 depicts plot for HCI with 𝜇0 𝜇0
∗⁄ = 1). Since, on 

the boundary 𝑦 =
𝐻

2
 temperature is 𝜃 = 𝑥2, then the graph of 

temperature change for 𝑦 > 0 is parabolic (Fig. 4). The 𝑦 < 0 
plot shows that the temperature change is a linear function of 
coordinate, since we selected very high-temperature conductivity 
of the interface, and thus the temperature of the latter should be 
constant. 

The same results were obtained using developed modified 
boundary elements method, which once again confirms its 
correctness. 

Example 3. Consider the problem of plane strain for a ther-
momagnetoelectroelastic anisotropic bimaterial consisting of two 
half-spaces. It contains a rectilinear elastic isotropic thermally 
insulated electro- and magnetically permeable inclusion of finite 

length 2𝑎. For its modelling the coupling principle for continua of 
different dimension is used [10]. In this example, it is assumed 
that the coefficients of linear thermal expansion of the inclusion 
material are zero. Its cross section is perpendicular to the bimate-
rial boundary (Fig. 5). One inclusion tip is located.in the half-space 

𝑥2 > 0, and the other in the half-space 𝑥2 < 0. The singularity 
at the point of intersection of the inclusion with the material inter-
face is not accounted for. The centre of inclusion coincides with 

the origin. Inclusion thickness is ℎ = 0,01𝑎, and its relative 

rigidity is 𝑘 =
𝐺𝑖

𝐶11
. 

 

Fig. 5. Scheme of the problem for a thermomagnetoelectroelastic  
            anisotropic bimaterial containing a thin inhomogeneity 

The heat source of intensity 𝑞 is located in the half-space 
𝑥2 > 0 at a distance of 0,5𝑎 to the interface; heat drain of the 

same intensity 𝑞 is located in the half-space 𝑥2 < 0 also, at a 

distance of 0,5𝑎 to the interface antisymmetrically. 
Two problems are considered: 

I) both bimaterial components are made of barium titanate 

(BaTiO3); 

II) the component 𝑥2 > 0 is made of barium titanate, and 

𝑥2 < 0 of cadmium selenide (CdSe). 

According to [18], the properties of BaTiO3 are as follows: 
elastic moduli: 𝐶11 = 𝐶33 = 150, 𝐶22 = 146, 𝐶12 = 𝐶13 = 𝐶23 =
66, 𝐶44 = 𝐶66 = 44, 𝐶55 = 42; 

piezoelectric constants: 𝑒21 = 𝑒23 = −4.35, 𝑒22 = 17,5, 𝑒16 =
𝑒34 = 11,4; 

dielectric constants: 𝜅11 = 9,86775, 𝜅22 = 11,151; 
heat conduction coefficients: 𝑘11 = 𝑘22 = 2.5; 

thermal expansion coefficients: 𝛼11 = 8.53 ∙ 10−6, 𝛼22 = 1.99 ∙

10−6; pyroelectric constants: 𝜆2 = 13,3 ∙ 10−6. 
The properties of CdSe are as follows [19]: 
elastic moduli: 𝐶11 = 𝐶33 = 74.1, 𝐶22 = 83.6, 𝐶12 = 𝐶23 = 39.3, 

𝐶13 = 45.2, 𝐶44 = 𝐶66 = 13.17, 𝐶55 = 14.45; 
piezoelectric constants: 𝑒21 = 𝑒23 = −0,160, 𝑒22 = 0,347, 

𝑒16 = 𝑒34 = −0,138; 
dielectric constants: 𝜅11 = 0.0826, 𝜅22 = 0,0903; 
heat conduction coefficients: 𝑘11 = 1, 𝑘22 = 2.5; 
thermal expansion coefficients: 𝛽11 = 𝛽33 = 0,621, 𝛽22 = 0,551; 
pyroelectric constants: 𝜒2 = −2,94 ∙ 10−6. 

  

Fig. 6. Dependence of dimensionless generalised SIFs of the inclusion  
            in an infinite body on the parameter of the interface 𝜇0 

The plots in Fig. 6 show the dependence of the dimensionless 
stress intensity factors on the thermal conductivity parameter of 

the interface 𝜇0. All calculations were performed by the above-
mentioned method of boundary elements [6], [8].  20 boundary 
elements were used to model the inclusion surface. With a further 
increase in the number of elements, the results obtained differ by 
<0.5%. Generalised SIFs and thermal conductivity parameter are 

normalised by 𝐾0 = 𝑞𝛽11  √𝜋𝑎 𝑘11⁄  and 𝜇0
∗ = 𝑎𝑘11, respec-

tively. Here 𝑘11 and 𝛽11 are coefficients of BaTiO3. 
It is noticed that in the first case in Fig. 6 (I), when the compo-

nents of the matrix are made of the same materials with geometric 
symmetry of the problem and asymmetry of temperature load, the 
values of stress intensity factors at opposite tips of the inclusion 
are expected to be the same in magnitude and opposite in sign. 
The maximum are dimensionless SIFs 𝐾22

+ 𝐾0⁄ = 𝐾22
− 𝐾0⁄ , 

≈ 0,014 for the high-temperature conducting interface at 

𝜇0 𝜇0
∗⁄ = 10−5. 

When half-spaces have different properties but the same ge-
ometry of the problem and the same heat load (Fig. 6 (II)), the 
symmetry of the solution is obviously not observed. Since the 

material of the half-space 𝑥2 > 0 is the same as in the previous 
case, the values of the SIFs at the inclusion tip located in this half-
plane will change very little. However, at the inclusion tip, which is 
located in the lower half-space, the change in coefficients is more 

noticeable: when 𝜇0 𝜇0
∗⁄ = 10−5 𝐾22

− 𝐾0⁄  changes from 0.014 to 
0.0075, and 𝐾12

− 𝐾0⁄  from 0.005 to 0.002. 
Example 4. Now consider the bimaterial containing two iden-

tical inclusions that are perpendicular to the boundary. Their 
properties are the same as in the previous example. They are 

placed at a distance 𝑑 to the axis 𝑥2.The heat source and drain of 
the same magnitude are located at a distance of 0,5𝑎 to the 

material interface and at the distance of 2𝑑 to the axis 𝑥2 (Fig. 7). 
As in the previous problem, we study the dependence of 

stress intensity factors on the thermal conductivity parameter of 

the interface 𝜇0, (𝜇0
∗ = 𝛼𝑘11). 
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Fig. 7. Scheme of the problem for thermoelastic anisotropic  
            bimaterial with two inclusions 

 
Fig. 8. Dependence of dimensionless generalised SIFs of two inclusions 

in an infinite body on the parameter of the interface 𝜇0, when the 

components are made of the same materials 

 
Fig. 9. Dependence of dimensionless generalised SIFs of two inclusions 

in an infinite body on the parameter of the interface 𝜇0, when the 

components are made of different materials 

The plots (Fig. 8) show the values of generalised SIFs for the 
(a) first and (b) second inclusions, when the components of the 
matrix are made of the same materials. 

Due to the fact that the inclusions are identical in their 

properties and located symmetrically about the axes 𝑥2 and 𝑥1, 
and the materials of the components have the same properties, 
the plots for both inclusions have a similar behaviour and differ 
only in sign. As in the previous problem, the maximum values of 

𝐾22
+ 𝐾0⁄ = 0,011 were obtained for 𝜇0 𝜇0

∗⁄ = 10−5 
Somewhat different results are observed in the case when the 

component 𝑥2 < 0 of the bimaterial is made of a material, whose 
properties are different from 𝑥2 > 0. 

Fig. 9(a) shows that in this case the values of SIFs at the 
vertex of the first inclusion have undergone significant changes in 
comparison with the matrix of Fig. 8(a). The maximum value 

𝐾22
+ 𝐾0⁄  increased from 0.011 to 0.014; and 𝐾22

− 𝐾0⁄  from 0.008 

to 0.012. The values 𝐾12
− 𝐾0⁄  have also increased. 

By contrast, at the tip of the second inclusion, the values of 
SIFs decreased. Fig. 9(b) shows that the maximum value 𝐾22

− 𝐾0⁄  

decreased from 0.011 to 0.0078; 𝐾22
+ 𝐾0⁄  from 0.008 to 0.0061. 

Also, at the upper and lower ends of the second inclusion ap-

proach the value of 0.001 at 𝜇0 𝜇0
∗⁄ = 102. 

6. CONCLUSION 

A mathematical model of a thermagnetoelectroelastic bimate-
rial solid with a high-temperature conducting coherent interface 
and a perfect magnetoelectromechanical contact of components 
has been developed, which in turn may contain thin deformable 
inclusions. In a closed form, purely boundary integral equations of 
the formulated problem are derived. That is, equations in which 
there is no need to take into account the integrals along the 
interface; thus, the boundary element mesh is required only for 
the boundary of the composite body and the midline of the thin 
inclusions. 

The method can be extended to account for inclusions at the 
bimaterial interface; however, the oscillating singularity at its tip 
should be accounted for, which is beyond the scope of the present 
publication. Nevertheless, the present paper accounts for 
imperfect interface, which physically means a thin layer of 
different properties on the bimaterial interface, which is very 
important in practical applications. 

The use of the obtained integral equations in combination with 
the boundary element method allows to solve several new 
problems for bimaterials consisting of the same and different 
anisotropic thermomagnetoelectroelastic materials, as well as 
containing thin deformable inclusions. Graphical dependences of 
generalised SIFs on the thermal conductivity parameter are 
derived. The obtained results show that the high thermal 
conductivity interface significantly affects the stress fields at the 
vertices of thin inclusions. 

All this allows to state that the developed method allows to 
solve with high accuracy the problem of thermomagnetoelasticity 
for bimaterial solids with a high-temperature conducting interface 
with thin ribbon-like deformable inclusions or cracks, which has 
not been possible so far using traditional numerical approaches. 
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