Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Wpływ zmian temperatury na powtarzalność pozycjonowania robota przy montażu części o powierzchniach cylindrycznych
Języki publikacji
Abstrakty
In this paper, the effect of the errors induced by temperature changes on the repeatability positioning error of an industrial robot is analysed. It has been shown that after the stabilization of the thermal conditions, these errors can be identified with the systematic errors. It has also been shown that if the ambient temperature cannot be sufficiently stabilized, the temperature errors can be described using a normal or uniform probability distribution. Depending on the choice of a point in the robot’s workspace and temperature fluctuations, these errors can comprise a small share of the total error of the robot. Then the total repeatability positioning error can be approximated with sufficient accuracy by a normal probability distribution or it can comprise the dominant component of this error. In this case, the total error can be approximated using a flat normal distribution. It has been shown that, depending on the choice of location in the workspace in which the assembly operation is carried out, it is possible to obtain both different probabilities of assembling the parts correctly and a different effect of errors caused by slight temperature changes on the value of those probabilities. The results found indicate the potential possibility of increasing the reliability of the process by proposing the selection of the location in the robot workspace which has the lowest sensitivity to errors ascribed to changes in temperature.
W niniejszej pracy przeanalizowano wpływ zmiany temperatury na błąd powtarzalności pozycjonowania robota przemysłowego. Wykazano, że po ustabilizowaniu się warunków termicznych błędy te można sklasyfikować jako błędy systematyczne. Wykazano również, że jeżeli w trakcie eksploatacji zrobotyzowanego stanowiska montażowego temperatura otoczenia nie może być wystarczająco ustabilizowana, błędy temperatury można opisać za pomocą jednostajnego rozkładu prawdopodobieństwa i w ten sposób uwzględnić w strukturze całkowitego błędu powtarzalności pozycjonowania. Błędy te na ogół stanowią niewielki udział w całkowitym błędzie robota, wówczas całkowity błąd powtarzalności pozycjonowania robota z dostateczną dokładnością można aproksymować normalnym rozkładem prawdopodobieństwa. W przeciwnym przypadku błąd ten może być przybliżony przy użyciu rozkładu płasko-normalnego. Wykazano że w zależności od wyboru miejsca realizacji zabiegu montażowego w przestrzeni stanowiska można uzyskać zarówno odmienne wartości prawdopodobieństwa połączenia części jak i różny wpływ błędów wywołanych niewielkimi zmianami temperatury na wartość tego prawdopodobieństwa. Uzyskane wyniki badań wskazują na potencjalne możliwości zwiększenia niezawodności procesu poprzez wybór miejsca w przestrzeni roboczej stanowiska charakteryzującego się najniższą wrażliwością na błędy spowodowane zmianami temperatury.
Czasopismo
Rocznik
Tom
Strony
503--513
Opis fizyczny
Bibliogr. 33 poz., rys. kolor.
Twórcy
autor
- Department of Manufacturing and Production Engineering Rzeszow University of Technology al. Powstańców Warszawy 8, 35-959 Rzeszów, Polska
autor
- Department of Manufacturing and Production Engineering Rzeszow University of Technology al. Powstańców Warszawy 8, 35-959 Rzeszów, Polska
autor
- Department of Manufacturing and Production Engineering Rzeszow University of Technology al. Powstańców Warszawy 8, 35-959 Rzeszów, Polska
autor
- Department of Materials Forming and Processing Rzeszow University of Technology al. Powstańców Warszawy 8, 35-959 Rzeszów, Polska
Bibliografia
- 1. Abderrahim M, Khamis A, Garrido S, Moreno L. Accuracy and Calibration Issues of Industrial Manipulators. [in:] Hua L K. Industrial Robotics- Programming, Simulation and Applications. ARS/plV: Germany, 2006, https://doi.org/10.5772/4895.
- 2. Angelidis A, Vosniakos G C. Prediction and compensation of relative position error along industrial robot end-effector paths. International Journal of Precision Engineering and Manufacturing 2014; 15(1): 63-73, https://doi.org/10.1007/s12541-013-0306-5.
- 3. Brethé J F, Vasselin E, Lefebvre D, Dakyo B. Modeling of repeatability phenomena using the stochastic ellipsoid approach. Robotica 2006; 24(4): 477-490, https://doi.org/10.1017/S0263574705002481.
- 4. Chen H, Fuhlbrigge T, Choi S, Wang J, Li X. Practical industrial robot zero offset calibration, Proceedings of the 4th IEEE Conference on Automation Science and Engineering; 2008 Aug 23-26; Washington; 2008: 516-521.
- 5. Cho N, Tu J F. Quantitative circularity tolerance analysis and design for 2D precision assemblies. International Journal of Machine Tools and Manufacture 2002: 42(13): 1391-1401, https://doi.org/10.1016/S0890-6955(02)00080-9.
- 6. Craig J J. Introduction to robotics: Mechanics and control. Massachusetts: Addison-Wesley, 1989.
- 7. Du G., Zhang P. Online robot calibration based on vision measurement. Robotics and Computer-Integrated Manufacturing 2013; 29 (1): 484-492, https://doi.org/10.1016/j.rcim.2013.05.003.
- 8. Eastwood S, Webb P. Compensation of thermal deformation of a hybrid parallel kinematic machine. Robotics and Computer-Integrated Manufacturing 2009; 25(1): 81-90, https://doi.org/10.1016/j.rcim.2007.10.001.
- 9. Elatta A, Gen L P, Zhi F L, Daoyuan Y, Fei L. An overview of robot calibration. Information Technology Journal 2004; 3(1): 74-68, https://doi.org/10.3923/itj.2004.74.78.
- 10. EN ISO 9283:2003, Manipulating industrial robots - Performance criteria and related test methods. Geneva: International Standards Organization, 2003.
- 11. Fotowicz P. Systematic effect as a part of the coverage material. Metrology and Measurement Systems 2010; 17(3): 439-446, https://doi.org/10.2478/v10178-010-0037-1.
- 12. Gong C, Yuan J, Ni J. Nongeometric error identification and compensation for robotic system by inverse calibration. International Journal of Machine Tools Manufacturing 2000; 40(14): 2119-2137, https://doi.org/10.1016/S0890-6955(00)00023-7.
- 13. Gürsel A, Bijan S. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mechanism and Machine Theory 2005; 40 (8): 879-906, https://doi.org/10.1016/j.mechmachtheory.2004.12.012.
- 14. Hameed Farhan U, Tolouei-Rad M, Osseiran A. Assembly modelling approach for special purpose machines. Assembly Automation 2018; 38 (2):158-172, https://doi.org/10.1108/AA-12-2016-170.
- 15. Heisel U, Richter F, Wurst K H. Thermal behaviour of industrial robots and possibilities for error compensation. CIRP Annals 1997; 46(1): 283-286, https://doi.org/10.1016/S0007-8506(07)60826-9.
- 16. Józwik J, Ostrowski D, Jarosz P, Mika D. Industrial robot repeatability testing with high speed camera Phantom. v2511. Advances in Science and Technology. Research Journal, 2016; 10(32): 86-96.
- 17. Kluz R, Trzepieciński T. The repeatability positioning analysis of the industrial robot arm. Assembly Automation 2014; 34(3): 285-295, https://doi.org/10.1108/AA-07-2013-070.
- 18. Kluz R, Trzepieciński T. Analysis of optimal orientation of robot gripper for an improved capability assembly process. Robotics and Autonomous Systems 2015; 74: 253-266, https://doi.org/10.1016/j.robot.2015.08.007.
- 19. Kluz R. Effect of temperature-induced errors on accuracy of robotised assembly stand with Mitsubishi RV-2 robot. Technology and Automation Assembly 2004; 2: 19-24.
- 20. Li R, Zhao Y. Dynamic error compensation for industrial robot based on thermal effect model. Measurement 2016; 88: 113-120, https://doi.org/10.1016/j.measurement.2016.02.038.
- 21. Nguyen H N, Zhou J, Kang H J. A new full pose measurement method for robot calibration. Sensors 2013; 13(7): 9132-9147, https://doi.org/10.3390/s130709132.
- 22. Pitchandi N, Perumaal S S, Irulappan M. Insertion force analysis of compliantly supported peg-in-hole assembly. Assembly Automation 2017; 37 (3): 285-295, https://doi.org/10.1108/AA-12-2016-167.
- 23. Płaczek M, Piszczek Ł. Testing of an industrial robot's accuracy and repeatability in off and online environment. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (3): 455-464, https://doi.org/10.17531/ein.2018.3.15.
- 24. Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools - a review: Part II: Thermal errors. International Journal of Machine Tools Manufacturing 2000; 40(9): 1257-1284, https://doi.org/10.1016/S0890-6955(00)00010-9.
- 25. Ruppert D. Statistics and finance. An introduction. New York: Springer, 2004.
- 26. Shapiro S S, Wilk M B. An analysis of variance test for normality. Biometrika 1965; 52(3/4): 591-611, https://doi.org/10.2307/2333709.
- 27. Shiakolas P S, Conrad K L, Yih T C. On the accuracy, repeatability and degree of influence of kinematics parameters for industrial robots. International Journal of Modelling and Simulation 2002; 22(4): 1-10, https://doi.org/10.1080/02286203.2002.11442246.
- 28. Slamani M, Nubiola A, Bonev I. Assessment of the positioning performance of an industrial robot. Industrial robot: An International Journal, 2012; 39(1): 57-68, https://doi.org/10.1108/01439911211192501.
- 29. Wu Y, Klimchik A, Caro S, Furet B, Pashkevich A. Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments. Robotics and Computer-Integrated Manufacturing 2015; 35: 151-168, https://doi.org/10.1016/j.rcim.2015.03.007.
- 30. Yin S, Guo Y, Ren Y, Zhu J, Yang S, Ye S. Real-time thermal error compensation method for robotic visual inspection system. International Journal of Advanced Manufacturing Technology 2014; 75(5-8): 933-946, https://doi.org/10.1007/s00170-014-6196-6.
- 31. Yu H, Zhang G, Ran Y, Li M, Wang Y. A comprehensive and practical reliability allocation method considering failure effects and reliability costs. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20(2): 244-251, https://doi.org/10.17531/ein.2018.2.09.
- 32. Yu Z, Shi Q, Wang H, Yu N, Huang Q, Fukuda T. How to achieve precise operation of a robotic manipulator on a macro to micro/nano scale. Assembly Automation 2017; 37 (2):186-199, https://doi.org/10.1108/AA-02-2017-017.
- 33. Zhenhua W, Hui X, Guodong C, Rongchuan S, Sun L. A distance error based industrial robot kinematic calibration method. Industrial Robot: An International Journal, 2014; 41(5): 439-446, https://doi.org/10.1108/IR-04-2014-0319
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89ca9ea3-d540-4a58-a2da-c57e88de82e9