Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to overcome the shortcomings of the dolphin algorithm, which is prone to falling into local optimum and premature conver-gence, an improved dolphin swarm algorithm, based on the standard dolphin algorithm, was proposed. As a measure of uncertainty, information entropy was used to measure the search stage in the dolphin swarm algorithm. Adaptive step size parameters and dynamic balance factors were introduced to correlate the search step size with the number of iterations and fitness, and to perform adaptive adjustment of the algorithm. Simulation experiments show that, comparing with the basic algorithm and other algorithms, the improved dolphin swarm algorithm is feasible and effective.
Rocznik
Tom
Strony
679--685
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Hebei University of Engineering, Handan056038, China
autor
- Hebei University of Engineering, Handan056038, China
Bibliografia
- [1] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: from Natural to Artificial Systems, Oxford University Press, 1999.
- [2] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents”, IEEE Trans Syst Man Cybern B, 26(1) 29‒41 (1996).
- [3] O. Deepa and A. Senthilkumar, “Swarm intelligence from natural to artificial systems: ant colony optimization”, International Journal on Applications of Graph Theory in Wireless Ad hoc Networks and Sensor Network, 8(1) 9‒17 (2016).
- [4] C.R. Reid and T. Latty, “Collective behaviour and swarm intelligence in slime moulds”, Fems Microbiology Reviews, 40(6) 798‒806 (2016).
- [5] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence for dynamic optimization: algorithms and applications”, Swarm & Evolutionary Computation, 33, 1‒17 (2017).
- [6] S. Strasser, R. Goodman, J. Sheppard et al., “A new discrete particle swarm optimization algorithm”, Genetic and Evolutionary Computation Conference, Denver, 53‒60 (2016).
- [7] Y. Rahmat-Samii, D. Gies, and J. Robinson, “Particle swarm optimization (PSO): a novel paradigm for antenna designs”, Ursi Radio Science Bulletin, 76(3) 14‒22 (2017).
- [8] G.G. Wang, A.H. Gandomi, A.H. Alavi et al., “A hybrid method based on krill herd and quantum-behaved particle swarm optimization”, Neural Computing & Applications, 27(4) 989‒1006 (2016).
- [9] J. Kwiecień and B. Filipowicz, “Firefly algorithm in optimization of queueing systems”, Bull. Pol. Ac.: Tech., 60(2) 363‒368 (2012).
- [10] H. Renaudineau, F. Donatantonio, J. Fontchastagner et al., “A PSO-based global MPPT technique for distributed PV power generation”, IEEE Trans Ind Electron, 62(2) 1047–1058 (2015).
- [11] B. Akay and D. Karaboga, “A modified artificial bee colony algorithm for real-parameter optimization”, Information Sciences, 192(1) 120‒142 (2012).
- [12] D. Karaboga, B. Gorkemli, C. Ozturk et al., “A comprehensive survey: artificial bee colony (ABC) algorithm and applications”, Artificial Intelligence Review, 42(1) 21‒57 (2014).
- [13] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence for dynamic optimization: algorithms and applications”, Swarm & Evolutionary Computation, 33, 1‒17 (2017).
- [14] W. Tian-Qi, Y. Min, and Y. Jianhua, “Dolphin swarm algorithm”, Frontiers of Information Technology & Electronic Engineering (8) 717‒729 (2016).
- [15] A. Kaveh and N. Farhoudi, “A new optimization method: dolphin echolocation”, Advances in Engineering Software, 59(5) 53‒70 (2013).
- [16] Y. Wang, T. Wang, C.Z. Zhang et al., “A new stochastic optimization approach—dolphin swarm optimization algorithm”, Inter-national Journal of Computational Intelligence & Applications, 15(02) 1650011 (2016,).
- [17] Z. Li, W. Li et al., “Air-targets Threat Assessment Using Grey Neural Network Optimized by Chaotic Dolphin Swarm Algorithm”, Control and Decision, 1‒7 (2018)
- [18] C.E. Shannon, “Prediction and entropy of printed English”, Bell Labs Technical Journal, 30(1) 50‒64 (1951).
- [19] A. Ben-Naim, “Entropy, Shannon’s measure of information and Boltzmann’s H-theorem”, Entropy, 19(2) 48 (2017).
- [20] L. Nemzer, “Shannon information entropy in the genetic code”, Journal of Theoretical Biology, 415, 158‒170 (2017).
- [21] H. Wang and X. Yao, “Objective reduction based on nonlinear correlation information entropy”, Soft Computing, 20(6) 2393‒2407 (2016,).
- [22] G. Ye, C. Pan, X. Huang et al., “A chaotic image encryption algorithm based on information entropy”, International Journal of Bifurcation & Chaos, 28(1) 1850010 (2018).
- [23] L. Yan-Cang and P. Yang, “Improved artificial bee colony algorithm based on information entropy”, Control and decision, 30(6) 1121‒1125 (2015).
- [24] L.D. Applegate et al., The Traveling Salesman Problem: A Com-utational Study, Princeton University Press, 2006
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89c9e175-9dca-4c4a-99b5-d01a1b1684e8