PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental characterization of the mechanical properties of the abdominal aortic aneurysm wall under uniaxial tension

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although many researchers have made the assumption that the abdominal aortic aneurysym (AAA) wall behaves as an incompressible and isotropic material, the experimental evidence for it is insufficient. Hence, the assumptions about the incompressibility and isotropy of the AAA wall were verified through analysis of stretch ratios of samples excised from the aneurysms walls. The stretch ratios were calculated on the basis of a real-time analysis of geometric dimensions of samples subjected to uniaxial tension. It was proved that the walls of abdominal aortic aneurysms can be modelled as an incompressible and isotropic material. Using histological techniques, the assumption concerning the negligence of shear stress in the analysis of AAA wall stresses was indirectly validated. The results were incorporated into a hyperelastic constitutive equation.
Rocznik
Strony
949--958
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
autor
  • Wroclaw University of Technology, Division of Biomedical Engineering and Experimental Mechanics, Wrocław, Poland
  • Wroclaw University of Technology, Division of Biomedical Engineering and Experimental Mechanics, Wrocław, Poland
Bibliografia
  • 1. Brady A., Thompson S., Fowkes G., Greenhalgh R., Powell J., 2004, Abdominal aortic aneurysm expansion. Risk factors and time intervals for surveillance, Circulation, 110, 16-21
  • 2. Carew T., Vaishnav R., Patel D., 1968, Compressibility of the arterial wall, Circulation Research, 23, 61-68
  • 3. Chuong C., Fung Y., 1986, On residual stresses in arteries, Journal of Biomechanical Engineering, 2108, 189-192
  • 4. Damme H., Sakalihasan N., Limet R., 2005, Factors promoting rupture of abdominal aortic aneurysms, Acta Chirurgica Belgica, 105, 1-11
  • 5. DiMartino E., Bohra A., Geest J., Gupta N., Makaroun M., Vorp D., 2006, Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue, Journal of Vascular Surgery, 43, 570-676
  • 6. DiMartino E., Mantero S., Inzoli F., 1998, Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis, European Journal of Vascular and Endovascular Surgery, 15, 290-299
  • 7. Dobrin P., 1999, Distribution of lamellar deformations. implications for properties of the arteria media, Hypertension, 33, 806-810
  • 8. Elger D., Blackketter D., Budwig R., Johansen K., 1996, The influence of shape on the stresses in model abdominal aortic aneurysms, Journal of Biomechanical Engineering, 118, 326-332
  • 9. Fung Y., 1967, Elasticity of soft tissues in simple elongation, American Journal of Physiology, 213, 1532-1544
  • 10. Geest J., Sacks M., Vorp D., 2004, Age dependency of the biaxial biomechanical behavior of human abdominal aorta, Journal of Biomechanical Engineering, 126, 815-822
  • 11. Geest J., Sacks M., Vorp D., 2006a, The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta, Journal of Biomechanics, 39, 1324-1334
  • 12. Geest J., Wang D., Wisniewski S., Makaroun M., Vorp D., 2006b, Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms, Annals of Biomedical Engineering, 34, 1098-1106
  • 13. Hall A., Busse E., McCarville D., Burgess J., 2000, Aortic wall tension as a predictive factor for abdominal aortic aneurysm rupture: improving the selection of patients for abdominal aortic aneurysm repair, Annals of Vascular Surgery, 14, 152-157
  • 14. Hans S., Jareunpoon O., Balasubramaniam M., Zelenock G., 2005, Size and location of thrombus in intact and ruptured abdominal aortic aneurysms, Journal of Vascular Surgery, 41, 584-588
  • 15. He C., Roach M., 1994, The composition and mechanical properties of abdominal aortic aneurysms, Journal of Vascular Surgery, 20, 6-13
  • 16. Heng M., Fagan M., Collier J., Desai G., McCollum P., Chetter I., 2008, Peak Wall stress measurement in elective and acute abdominal aortic aneurysms, Journal of Vascular Surgery, 47, 17-22
  • 17. Holmes D., Liao S., Parks W., Thompson R., 1995, Medial neovascularization in abdominal aortic aneurysm: a histopathologic marker of aneurysmal degeneraton with pathophysiologic implications, Journal of Vascular Surgery, 21, 761-772
  • 18. Holzapfel G., 2000, Nonlinear Solid Mechanics. A Continuum Approach for Engineering, Wiley, Chicester
  • 19. Holzapfel G., Gasser T., Stadler M., 2002, A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis, European Journal of Mechanics A/Solids, 21, 441-463
  • 20. Holzapfel G., Ogden R., 2003, Biomechanics of Soft Tissue in Cardiovascular Systems, Springer-Verlag
  • 21. Holzapfel G., Weizsacker H., 1998, Biomechanical behavior of the arterial wall and its numerical characterization, Computers in Biology and Medicine, 28, 377-392
  • 22. Humphrey J., 1995, Mechanics of the arterial wall: review and directions, Critical Reviews in Biomedical Engineering, 23, 1-162
  • 23. Humphrey J., 2002, Cardiovascular Solid Mechanics. Cells, Tissues, and Organs, Springer-Verlag, New York
  • 24. Johnson M., Tarbell J., 2001, A biphasic, anisotropic model of the aortic wall, Journal of Biomechanical Engineering, 123, 52-57
  • 25. Kobielarz M., Będziński R., Filipiak J., Gnus J., Hauser W., 2004, Mechanical properties of walls of abdominal aortic and abdominal aortic aneurysm, Acta of Bioengineering and Biomechanics, 6, 161-165
  • 26. Kobielarz M., Szotek S., Kuropka P., Kaleta K., 2008, Mechanical and structural properties of abdominal aortic aneurysms, Engineering of Biomaterials, 11, 98-100
  • 27. Kot M., Kobielarz M., Maksymowicz K., 2011, Assessment of mechanical properties of arteria calcium deposition, Transaction of FAMENA, 35, 3, 49-56
  • 28. Li Z., Kleinstreuer C., 2006, Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model, Journal of Biomechanics, 39, 2264-2273
  • 29. Longo M., Buda S., Fiotta N., Xiong W., Griener T., Shapiro S., Baxter T., 2005, MMP-12 has a role in abdominal aortic aneurysms in mice, Surgery, 137, 457-462
  • 30. Mower W., Quinones W., Gambhir S., 1997, Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress, Journal of Vascular Surgery, 26, 602-608
  • 31. Nikodem A., 2012, Correlations between structural and mechanical properties of human trabecular femur bone, Acta of Bioengineering and Biomechanics, 14, 2, 37-46
  • 32. Ogden R., Schulze-Bauer C., 2000, Phenomenological and structural aspects of the mechanical response of arteries, [In:] Mechanics in Biology, J. Casey and G. Bao (Edit.), New York, ASME: 125-140
  • 33. Peattie R., Riehle T., Bluth E., 2004, Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses, Journal of Biomechanical Engineering, 126, 438-446
  • 34. Pezowicz C., 2010, Analysis of selected mechanical properties of intervertebral disc annulus fibrosus in macro and microscopic scale, Journal of Theoretical and Applied Mechanics, 48, 4, 917-932
  • 35. Raghavan M., Kratzberg J., Tolosa E., Hanaoka M., Walker P., daSilva E., 2006, Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm, Journal of Biomechanics, 39, 3010-3016
  • 36. Raghavan M., Vorp D., 2000, Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability, Journal of Biomechanics, 33, 475-482
  • 37. Raghavan M., Webster M., Vorp D., 1996, Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model, Annals of Biomedical Engineering, 24, 573-582
  • 38. Sakalihasan N., Limet R., Defawe O., 2005, Abdominal aortic aneurysm, Lancet, 365, 1577-1589
  • 39. Simon B., Kaufmann M., McAfee M., Baldwin A., Wilson L., 1998, Identification and determination of material properties for porohyperelastic analysis of large arteries, Journal of Biomechanical Engineering, 120, 188-194
  • 40. Stergiopulos N., Vulliemoz S., Rachev A., Meister J., Greenwald S., 2001, Assessing the homogeneity of the elastic properties and composition of the pig aortic media, Journal of Vascular Research, 38, 237-246
  • 41. Thubrikar M., Labrosse M., Robicsek F., Al-Soudi J., Fowler B., 2001, Mechanical properties of abdominal aortic aneurysm wall, Journal of Medical Engineering and Technology, 25, 133-142
  • 42. Tóth B., Raffai G., Bojt´ar I., 2005, Analysis of the mechanical parameters of human brain aneurysm, Acta of Bioengineering and Biomechanics, 7, 3-23
  • 43. Truijers M., Pol J., Schultze Kool L., Sterkenburg S., Fillinger M., Blankensteijn J., 2007, Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms, European Journal of Vascular and Endovascular Surgery, 33, 401-407
  • 44. Van Bavel E., Siersma P., Spaan J., 2003, Elasticity of passive blood vessels: a new concept, American Journal of Physiology – Heart and Circulatory Physiology, 285, H1986-H2000
  • 45. Veress A., Vince D., Anderson P., Cornhill J., Herderick E., 2000, Vascular mechanics of the coronary artery, Zeitschrift fr Kardiologie, 89, 92-100
  • 46. Vito R., Dixon S., 2003, Blood vessel constitutive models - 1995-2002, Annual Review of Biomedical Engineering, 5, 413-439
  • 47. Vorp D., 2007, Biomechanics of abdominal aortic aneurysm, Journal of Biomechanics, 40, 1887-1902
  • 48. Vorp D., Geest J., 2005, Biomechanical determinants of abdominal aortic aneurysm rupture, Arteriosclerosis, Thrombosis and Vascular Biology, 25, 1558-1566
  • 49. Vorp D., Mandarino W., Webster M., Gorcsan J., 1996, Potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a new non-invasive method, Cardiovascular Surgery, 4, 732-739
  • 50. Vorp D., Raghavan M., Webster M., 1998, Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry, Journal of Vascular Surgery, 27, 632-639
  • 51. Wang D., Makaroun M., Webster M., Vorp D., 2002, Effect of intraluminal thrombus on wall stress in patient specific model of abdominal aortic aneurysm, Journal of Vascular Surgery, 3, 598-604
  • 52. Weizsacker H., Pinto J., 1988, Isotropy and anisotropy of the arterial wall, Journal of Biomechanics, 21, 477-487
  • 53. Witkiewicz W., Gnus J., Hauzer W., Kobielarz M., Będziński R., Szotek S., Kosiński M., Pfanhauser M., Bałasz S., 2007, Biomechanical characteristics of the abdominal aortic wall, Acta Angiologica, 13, 122-129
  • 54. Yamada H., Tanaka E., Murakami S., 1994, Mechanical evaluation of growth and rupture of aneurysm in abdominal aorta, JSME International Journal, Series A, 37, 181-187
  • 55. Żak M., Kuropka P., Kobielarz M., Dudek A., Kaleta-Kuratewicz K., Szotek S., 2011, Determination of the mechanical properties of the skin of pig foetuses with respect to its structure, Acta of Bioengineering and Biomechanics, 13, 2, 37-43
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89c58ee9-68d0-4a46-992c-cd41102811f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.