Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The methane hazard is one of the natural hazards occurring in hard coal mining. The content of natural methane in hard coal seams, the so-called methane-bearing capacity, is one of the key parameters that allow for proper assessment of the methane hazard and the state of the threat of gas and rock outbursts. For safety purposes, there is a constant need to improve the methods for the determination of this parameter. In the conditions of Polish mining, the method used for methane-bearing capacity determination is the direct drill cuttings method. This paper contains a comparative study presenting three different methods of methane-bearing capacity determination. Tests were conducted using two direct methods (the drill cuttings method and the United States Bureau of Mines (USBM) method), and the indirect method based on the desorption intensity index. On the basis of the obtained test results, it was found that the results obtained with the USBM method were slightly higher than those obtained with the direct drill cuttings method. Gas losses, an important element affecting the final value of the assay, were also analysed. This comparative study will evaluate the validity and applicability of the above methods under specific conditions in hard coal mining.
Wydawca
Czasopismo
Rocznik
Tom
Strony
309--318
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
- Central Mining Institute, Department of Mining Aerology, Plac Gwarków 1, 40-166 Katowice, Poland
Bibliografia
- [1] Dziurzyński W, Wasilewski S, Krach A, Pałka T. Prediction of the atmosphere state in the area of a longwall and its gobs on the basis of data from the mine monitoring system. Przeglad Gorn 2011;67(7-8):265-71.
- [2] Wierzbiński K, Krause E. Influence of working sections and ventilation-methane conditions in longwalls on methane hazard occurrence. Przeglad Gorn 2009;65(11-12):52-60.
- [3] Dziurzyński W, Krause E. Influence of the field of aerodynamic potentials and surroundings of goaf on methane hazard in longwall N-12 in seam 329/1, 329/1-2 in "Krupiński" Coal Mine. Arch Min Sci 2012;57(4):819-30. https://doi.org/10.2478/v10267-012-0053-y.
- [4] Tutak M, Brodny J. Forecasting methane emissions from hard coal mines including the methane drainage process. Energies 2019;12(20):3840. https://doi.org/10.3390/en12203840.
- [5] Krause E. Prevention on methane deposits seismically endangered. Prace Naukowe GIG Górnictwo i Środowisko 2005;3:65-79.
- [6] Kędzior S. Accumulation of coalbed methane in the southwest part of Upper Silesian Coal Basin (southern Poland). Int J Coal Geol 2009;80:20-34. https://doi.org/10.1016/j.coal.2009.08.003.
- [7] Krause E, Karbownik M. Tests of methane desorption and emission from samples of hard coal in the context of mine closures through flooding. Journal of Sustainable Mining 2019;18(3):127-33. https://doi.org/10.1016/j.jsm.2019.03.005.
- [8] Rybtsev AA, Kozyreva YN. Calculation of the coal seam natural gas content. IOP Conf Ser Earth Environ Sci 2021;823. https://doi.org/10.1088/1755-1315/823/1/012003. Novokuznetsk.
- [9] Krause E. Assessment and control of the methane gazard in hard coal mines. Prace Naukowe Głównego Instytutu Górnictwa 2009;878. Katowice.
- [10] Krause E, Łukowicz K. Zagroźenie metanowe. W: koncentracja wydobycia a zagrożenia górnicze. Praca zbiorowa pod redakcją J. Dubińskiego. Katowice; 1999.
- [11] Cybulski K, Krause E, Łukowicz K. Wpływ koncentracji wydobycia na kształtowanie się zagrożenia metanowego w wyrobiskach środowiska ściany. 1. Kraków: Szkoła Aerologii Górniczej. AGH; 1999.
- [12] Koptoń H, Wierzbiński K. The balance of methane and ventilation as a tool for methane hazard assessment in the areas of longwalls exploited in hard coal mines. Journal of Sustainable Mining 2014;13(4):40-6. https://doi.org/10.46873/2300-3960.1249.
- [13] Kędzior S. The influence of tectonic facor on methane bearing capacity in chosen areas of the Upper Silesian Coal Basin. Pol Geol Inst Spec Pap 2002;7:143-8.
- [14] Koptoń H. Method of prognosing absolute methane content in dog headings driven with heading machine in coal mines. Prace Naukowe GIG Górnictwo i Środowisko 2009;3:53-72.
- [15] Xu H, Ahmad F, Hu B, Sun G, Liu H, Ding H, et al. Methodology for lost gas determination from exploratory coal cores and comparative evaluation of the accuracy of the direct method. ACS Omega 2021;6:19695-704. https://doi.org/10.1021/acsomega.1c02351.
- [16] Wang L, Cheng L-b, Cheng Y-p, Liu S, Guo P-k, Jin K, et al. A new method for accurate and rapid measurement of underground coal seam gas content. J Nat Gas Sci Eng 2015;26: 1388-98. https://doi.org/10.1016/j.jngse.2015.08.020.
- [17] Regulation of the polish minister of the environment of 29th January 2013, on natural hazards in mining plants. Retrieved from, http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20130000230.
- [18] Regulation of the Polish Minister of Energy of 23rd November 2016, on detailed requirements for operating underground mining plants [internet]. Retrieved from: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001118.
- [19] Polish Committee for Standardization: PN-G-44200. 2013-10 Mining. Determination of methane-bearing capacity in hard coal seams. Drill cuttings method. Poland; 2013.
- [20] Chen S-j, Cheng G-y, Xu A-m, Chen X-x. New technology of determining coalbed gas content by reversion seal coring. J Coal Sci Eng 2012;18:35-8. https://doi.org/10.1007/s12404-012-0107-y.
- [21] Diamond WP, Schatzel SJ. Measuring the gas content of coal: a review. Int J Coal Geol 1998;35:311-31. https://doi.org/10.1016/S0166-5162(97)00040-2.
- [22] Bertard C, Bruyet B, Gunther J. Determination of desorbable gas concentration of coal (direct method). Int J Rock Mech Min Sci Geomech Abstracts 1970;7:43-65. https://doi.org/10.1016/0148-9062(70)90027-6.
- [23] Ulery J, Hyman D. In the modified direct method of gas content determination: applications and results, Proceedings of the 1991 coalbed methane symposium. Alabama: Tuscaloosa; May 1991. p. 489-500.
- [24] Diamond WP, Levine JR. Direct method determination of the gas content of coal: procedures and results, report of investigations 8515vol. 36. U.S. Bureau of Mines; 1981.
- [25] McCulloch CM, Levine JR, Kissell FN, Deul M. Measuring the methane content of bituminous coalbeds, report of investigations 8043. U.S. Bureau of Mines; 1975. p. 22.
- [26] Szlązak N, Korzec M. Method for determining the coalbed methane content with determination the uncertainty of measurements. Arch Min Sci 2016;61:443-56. https://doi.org/10.1515/amsc-2016-0032.
- [27] Chase R. Comparison of methods used for determining the natural gas content of coalbeds from exploratory cores, technical report; Marietta College. OH: Department of Petroleum Engineering; 1979.
- [28] Polish Committee for Standardization. PN-ISO 1171: 2002 Solid fuels. Determination of ash content. 2002. Poland.
- [29] Polish Committee for Standardization: PN-G-04511:1980. Solid fuels. Poland: Determination of moisture content; 1980.
- [30] Polish Committee for Standardization: PN-G-04516:1998. Solid fuels. Determination of volatile matter content by weight method. 1998. Poland.
- [31] ASTM International. ASTM D7569/D7569M - 10 (Reap- proved 2015) Determination of Gas Content of Coal - Direct Desorption Method. 2015. Pennsylvania, United States.
- [32] Kissell FN, McCulloch CM, Elder CH. The direct method of determining methane content of coalbeds for ventilation Design. United States Department of The Interior. Bur Mine Rep Invest 1973;7767:1-17.
- [33] Polish Committee for Standardization: PN-G-04567:1996. Hard coal. Determination of desorption intensity index. 1996. Poland.
- [34] Szlązak N, Korzec M. Determination of methane content in coal using a new method with analyzes of the uncertainty of measurements. Przeglad Gorn 2015;4:38-46.
- [35] Szlązak N, Borowski M, Korzec M, Obracaj D, Swolkień J. Method for the determination of methane content of coal seams. Górnictwo i Geoinżynieria 2011;35(4):101-17.
- [36] Crosdale PJ, Beamish BB. Coalbed methane sorption releated to coal composition. Int J Coal Geol 1998;35:147-58. https://doi.org/10.1016/S0166-5162(97)00015-3.
- [37] Harpalani S, Schraufnagel RA. Shrinkage of coal matrix with release of gas and its impact on permeability of coal. Fuel 1990;69:551-6. https://doi.org/10.1016/0016-2361(90)90137-F.
- [38] Karbownik M, Krawczyk J, Godyń K, Schlieter T, Ščučka J. Analysis of the influence of coal petrography on the proper application of the unipore and bidisperse models of methane diffusion. Energies 2021;14(24):8495. https://doi.org/10.3390/en14248495.
- [39] Skoczylas N, Kudasik M, Wierzbicki M, Murzyn T. New instruments and methods for analyzing the coal-methane system. Studia Geotechnica Mech 2015;37(1):85-91. https://doi.org/10.1515/sgem-2015-0010.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89c146f3-913b-48e6-abcb-d97a61d0bef8