PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molecular Dynamics Simulation Studies of the CL-20/DNB Co-crystal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Molecular dynamics (MD) simulation was conducted for a DNB (1,3-dinitrobenzene) crystal, a ε-CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) crystal, a CL-20/DNB co-crystal and a CL-20/DNB composite. From the calculated maximum bond length (Lmax) of the N−NO2 trigger bond, the cohesive energy density (CED) and the binding energy (Ebind), it was found that the CL-20/DNB co-crystal is more insensitive than its composite. Its thermal stability is also better than that of its composite. The pair correlation function (PCF) analysis method was applied to investigate the interfaces between different molecular layers in the CL-20/DNB co-crystal, and in the composite. Additionally, the calculated mechanical data showed that the moduli of the CL-20/DNB co-crystal and its composite are smaller and their elastic elongation and ductility are better than those of the ε-CL-20 and DNB crystals.
Rocznik
Strony
677--693
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • Molecules And Materials Computation Institute, School Of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
autor
  • Molecules And Materials Computation Institute, School Of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
autor
  • National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, P.R. China
autor
  • National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, P.R. China
autor
  • Molecules And Materials Computation Institute, School Of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
Bibliografia
  • [1] Agrawal J.P., Recent Trends in High-Energy Materials, Prog. Energy Combust. Sci., 1998, 24(1), 1-30.
  • [2] Sikder A.K, Sikder N., A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Applications, J. Hazard. Mater., 2004, 112(1), 1-15.
  • [3] Landenberger K.B., Matzger A.J., Cocrystal Engineering of a Prototype Energetic Material: Supramolecular Chemistry of 2,4,6-Trinitrotoluene, Cryst. Growth & Design, 2010, 10(12), 5341-5347.
  • [4] Shen J P, Duan X H, Luo Q P, Zhou Y, Bao Q L, Ma Y J, Pei C H. Preparation and Characterization of a Novel Cocrystal Explosive, Cryst. Growth Des., 2011, 11(5): 1759-1765.
  • [5] Bolton O, Matzger A J. Improved Stability and Smart-material Functionality Realized in an Energetic Cocrystal, Angew. Chem., Int. Ed., 2011, 50(38), 8960-8963.
  • [6] Bolton O., Simke L.R., Pagoria P.F., Matzger A.J., High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX, Cryst. Growth Des., 2012, 12(9), 4311-4314.
  • [7] Landenberger K.B., Matzger A.J., Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane (HMX), Cryst. Growth Des., 2012, 12(7), 3603-3609.
  • [8] Guo C.Y, Zhang H B, Wang X.C., Liu X.F., Sun J., Study on a Novel Energetic Cocrystal of TNT/TNB, J. Mater. Sci., 2013, 48(3): 1351-1357.
  • [9] Zhang H.B., Guo C.Y., Wang X.C., Xu J.J., He X., Liu Y., Liu X.F., Huang H., Sun J., Five Energetic Cocrystals of BTF by Intermolecular Hydrogen Bond and π-Stacking Interactions, Cryst.Growth Des., 2013, 13(2), 679-687.
  • [10] Millar D.I.A., Maynard-Casely H.E., Allan D.R., Cumming A.S., Lennie A.R., Mackay A.J., Oswald I.D.H., Tang C.C., Pulham C.R., Crystal Engineering of Energetic Materials: Co-crystals of CL-20, Cryst. Eng. Comm., 2012, 14(10), 3742-3749.
  • [11] Yang Z.W., Li H.Z., Zhou X.Q., Zhang C.Y., Huang H., Li J.S., Nie F.D., Characterization and Properties of a Novel Energetic-Energetic Cocrystal Explosive Composed of HNIW and BTF, Cryst. Growth Des., 2012, 12(11), 5155-5158.
  • [12] Yang Z.W., Li H.Z., Huang H., Zhou X.Q, Li J.S., Nie F.D., Preparation and Performance of a HNIW/TNT Cocrystal Explosive, Propellants Explos. Pyrotech., 2013, 38(4), 495-501.
  • [13] Guo C.Y., Zhang H.B., Wang X.C., Xu J.J., Liu Y., Liu X.F., Huang H., Sun J., Crystal Structure and Explosive Performance of a New CL-20/Caprolactam Cocrystal, J. Mol. Struct., 2013, 1048, 267-273.
  • [14] Wang Y.P., Yang Z.W., Li H.Z., Zhou X.Q., Zhang Q., Wang J.H., Liu Y.C., A Novel Cocrystal Explosive of HNIW with Good Comprehensive Properties, Propellants Explos. Pyrotech., 2014, 39(4), 590-596.
  • [15] Maksimowski P., Rumianowski T., Properties of the Gamma-Cyclodextrin/CL-20 System, Centr. Eur. J. Energ. Mater., 2016, 13(1), 217-229.
  • [16] Lara-Ochoa F., Espinosa-Perez G., Cocrystals Definitions, Supramolecular Chemistry, 2007, 19(8), 553-557.
  • [17] Shan N., Zaworotko M.J., The Role of Cocrystals in Pharmaceutical Science, Drug Discovery Today, 2008, 13(9), 440-446.
  • [18] Agrawal J.P., Some New High Energy Materials and Their Formulations for Specialized Applications, Propellants Explos. Pyrotech., 2005, 30(5), 316-328.
  • [19] Foltz M.F., Coon C.L., Garcia F., Nichols A.L. The Thermal Stability of the Polymorphs of Hexanitrohexaazaisowurtzitane, Part I., Propellants Explos. Pyrotech., 1994, 19(1), 19-25.
  • [20] Xiao H.M., Xu X.J., Qiu L., Theoretical Design of High Energy Density Materials, Beijing, Science Press, 2008.
  • [21] Zhong Y.P., Hu Y.D., Jiang H.Z., Handbook for Properties of Explosives (in Chinese), Ordnance Industry Press, Beijing, 1990.
  • [22] Sun H., COMPASS: An Ab Initio Force-field Optimized for Condensed-phase Applications Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B, 1998, 102(38), 7338-7364.
  • [23] Bunte S.W., Sun H., Molecular Modeling of Energetic Materials: the Parameterization and Validation of Nitrate Esters in the COMPASS Force Field, J. Phys. Chem. B, 2000, 104(11), 2477-2489.
  • [24] Zhao X.Q., Shi N.C., Crystal Structure of ε-Hexanitrohexaazaisowurtzitane, Chin. Sci. Bull., 1995, 40(23), 2158-2160.
  • [25] Trotter J, Williston C S. Bond Lengths and Thermal Vibrations in m-Dinitrobenzene, Acta Crystallogr., 1966, 21(2), 285-288.
  • [26] Andersen H.C., Molecular Dynamics Simulations at Constant Pressure and/or Temperature, J. Chem. Phys., 1980, 72(4), 2384.
  • [27] Parrinello M., Rahman A., Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method, J. Appl. Phys., 1981, 52, 7182.
  • [28] Allen M.P., Tildesley D.J., Computer Simulation of Liquids, Oxford University Press, 1989.
  • [29] Ewald P.P., Evaluation of Optical and Electrostatic Lattice Potentials, Ann. Phys., 1921, 64, 253-287.
  • [30] Politzer P., Murray J.S., Lane P., Sjoberg P., Adolph H.G., Shock-sensitivity Relationships for Nitramines and Nitroaliphatics, Chem. Phys. Lett., 1991, 181(1), 78-82.
  • [31] Patil D.G., Brill T.B., Thermal Decomposition of Energetic Materials 53. Kinetics and Mechanism of Thermolysis of Hexanitrohexazaisowurtzitane, Combust. Flame, 1991, 87(2), 145-151.
  • [32] Korsounskii B.L., Nedel’ko V.V., Chukanov N.V., Larikova T.S., Volk F., Kinetics of Thermal Decomposition of Hexanitrohexaazaisowurtzitane, Russ. Chem. Bull., 2000, 49(5), 812-818.
  • [33] Geetha M., Nair U.R., Sarwade D.B., Gore G M, Asthana S.N., Singh H., Studies on CL-20: the Most Powerful High Energy Material, J. Therm. Anal. Calorim., 2003, 73(3), 913-922.
  • [34] Xu X.J., Xiao H.M., Ju X.H., Gong X.D., Theoretical Study on Pyrolysis Mechanism for ε-Hexanitrohexaazaisowurtzitane, Chinese Journal of Organic Chemistry (Youji Huaxue), 2005, 25(5), 536-539.
  • [35] Xu X.J., Zhu W.H., Xiao H.M., DFT Studies on the Four Polymorphs of Crystalline CL-20 and the Influences of Hydrostatic Pressure on ε-CL-20 Crystal, J. Phys. Chem. B, 2007, 111(8), 2090-2097.
  • [36] Xiao J.J., Zhao L., Zhu W., Chen J., Ji G.F., Zhao F., Wu Q., Xiao H.M., Molecular Dynamics Study on the Relationships of Modeling, Structural and Energy Properties with Sensitivity for RDX-based PBXs, Sci. China: Chem., 2012, 55(12), 2587-2594.
  • [37] Xiao J.J., Wang W.R., Chen J., Ji G.F., Zhu W., Xiao H.M., Study on Structure, Sensitivity and Mechanical Properties of HMX and HMX-based PBXs with Molecular Dynamics Simulation, Comput. Theor. Chem., 2012, 999, 21-27.
  • [38] Xiao J.J., Zhu W.H., Zhu W., Xiao H.M., Molecular Dynamics of Energetic Materials, Beijing: Science Press, 2013.
  • [39] Politzer P., Murray J.S., Quantitative Analyses of Molecular Surface Electrostatic Potentials in Relation to Hydrogen Bonding and Co-crystallization, Crys. Growth Des., 2015, 15, 3767-3774.
  • [40] Murray J.S., Shields Z.P., Seybold P.G., Politzer P., Intuitive and Counterintuitive Noncovalent Interactions of Aromatic π Regions with the Hydrogen and the Nitrogen of HCN, J. Comput. Sci., 2015, 10, 209-216.
  • [41] Pugh S.F., Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals, Philos. Mag., 1954, 45(367), 823-843.
  • [42] Pettifor D.G., Theoretical Predictions of Structure and Related Properties of Intermetallics, Mater. Sci. Technol., 1992, 8(4), 345-349.
  • [43] Xiao J.J., Wang W.R., Chen J., Ji G.F., Zhu W., Xiao H.M., Study on Structure, Sensitivity and Mechanical Properties of HMX and HMX-based PBXs with Molecular Dynamics Simulation, Comput. Theor. Chem., 2012, 999, 21-27.
  • [44] Parrinello M., Rahman A., Strain Fluctuations and Elastic Constants, J. Chem. Phys., 1982, 76(5), 2662-2666.
  • [45] Watt J.P., Davies G.F., O’Connell R.J., The Elastic Properties of Composite Materials, Rev. Geophys., 1976, 14(4), 541-563.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89c0ba1d-f3b2-40b3-844f-12f997919462
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.