PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ethylcellulose as a coating material in controlled-release fertilizers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ethylcellulose polymer was used as a coating material in the preparation of controlled release fertilizers. The materials have been prepared with the use of an immersion method. The mass ratio of polymer to fertilizer was in the range of 0.165–0.285 and the layer thickness was in the range of 204–244 μm. Mechanical properties of the prepared materials were significantly better in comparison with the initial fertilizer. Measurements of time and the degree of release of mineral components from the obtained materials were determined with a standard method. Ethylcellulose-coated materials have met the requirements of controlled release fertilizers.
Rocznik
Strony
52--58
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Piastów Ave. 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Piastów Ave. 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Mosier, A.R., Syers, J.K. & Freney, J.R. (2004). Nitrogen fertilizer: an essential component of food, feed, and fiber production. In: A.R. Mosier, J.K. Syers, J.R. Freney (Eds.), Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment (pp. 3–15). SCOPE Publication Series 65. St. Louis, MI: Island Press.
  • 2. Brown, L.R. (1999). Feeding nine billion. In L.R. Brown, C. Flavin, H. French (Eds.), State of the world: A Worldwatch Institute report on progress toward a sustainable society . New York: W.W. Norton & Company.
  • 3. United Nations, Department of Economic and Social Affairs, Population Division, (2013). World Population Prospects: The 2012 Revision , DVD Edition.
  • 4. Heffer, P. & Prud’homme, M. (2017). Fertilizer Outlook 2017–2021, 85 th International Fertilizer Industry Association Annual Conference, 22–24 May, Marrakech (Morocco): International Fertilizer Industry Association, Paris.
  • 5. van Cleemput, O., Zapata, F. & Vanlauwe, B. (2008). Use of tracer technology in mineral fertilizer management. In: Guidelines on Nitrogen Management in Agricultural Systems (pp. 19–126). Vienna, Austria: International Atomic Energy Agency.
  • 6. Dobermann, A. (2005). Nitrogen use efficiency - state of the art. In: Proceedings of the IFA International Workshop on Enhanced-Efficiency Fertilizers, 28–30 June. Frankfurt, Germany: International Fertilizer Industry Association.
  • 7. Smil, V.A. (1999). Nitrogen in crop production: An account of global flows, Global Biogeochem. Cycl. A3, 647.
  • 8. Hauck, R.D. (1985). Slow release and bio-inhibitor--amended nitrogen fertilizers. In: O.P. Engelstad (Ed.), Fertilizer technology and use (p. 293–322). Madison, WI: Soil Science Society of America.
  • 9. Shaviv, A. & Mikkelsen, R.I. (1993). Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation – a review. Fert. Res. 35, 1–12.
  • 10. Trenkel, M.E. (2010). Slow- and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture . Paris, France: International Fertilizer Industry Association.
  • 11. Chien, S.H., Prochnow, L.I., Tu, S. & Snyder, C.S. (2011). Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review, Nutr. Cycl. Agroecosyst. 89, 229–255. DOI: 10.1007/s10705-010-9390-4.
  • 12. Finck, A. (1992). Fertilizers and their efficient use. In: D.J. Halliday, M.E. Trenkel, W. Wichmann, (Eds.), World Fertilizer Use Manual , Paris, France: International Fertilizer Industry Association.
  • 13. Shaviv, A. (2000). Advances in controlled release fertilizers, Adv. Agron. 71, 1–49. http://dx.doi.org/10.1016/S0065-2113(01)71011-5
  • 14. Peoples, M.B., Boyer, E.W., Goulding, K.W.T., Heffer, P., Ochwoh, V.A., Vanlauwe, B., Wood, S., Yagi, K. & van Cleemput, O. (2004). Pathways of nitrogen loss and their impacts on human health and the environment. In: A.R. Mosier, J.K. Syers, J.R. Freney (Eds.), Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment (pp. 53–70). SCOPE Publication Series 65. St. Louis, MI: Island Press.
  • 15. Davidson, D. & Gu, F.X. (2012). Materials for sustained and controlled release of nutrients and molecules to support plant growth. J. Agric. Food Chem. 60, 870–876. DOI: 10.1021/jf204092h.
  • 16. Townsend, A.R., Howarth, R.W., Bazzaz, F.A., Booth, M.S., Cleveland, C.C., Collinge, S.K., Dobson, A.P., Epstein, P.R., Holland, E.A., Keeney, D.R., Mallin, M.A., Rogers, C.A., Wayne, P. & Wolfe, A.H. (2003). Human health effects of a changing global nitrogen cycle. Front. Ecol. Environ. 1(5), 240–246. DOI: 10.1890/1540-9295(2003)001[0240:HHEOAC]2.0.CO;2.
  • 17. Matson, P.A., Naylor, R. & Ortiz-Monasterio, I. (1998). Integration of environmental, agronomic and economic aspects of fertilizer management. Science , 280, 112–115. DOI: 10.1126/science.280.5360.112.
  • 18. Craswell, E.T. & Godwin, D.C. (1984). The efficiency of nitrogen fertilizers applied to cereals in different climates. Adv. Plant Nutr. , 1, 1–9.
  • 19. Oertli, J.J. (1980). Controlled-release fertilizers. Fert. Res. 1, 103–123.
  • 20. Shaviv, A., (2005), Controlled Release Fertilizers. IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, International Fertilizer Industry Association Paris, France.
  • 21. Azeem, B., KuShaari, K., Man, Z.B., Basit, A. & Thanh, T.H., (2014). Review on materials and methods to produce controlled release coated urea fertilizer. J. Controlled Release 181, 11–21. https://doi.org/10.1016/j.jconrel.2014.02.020
  • 22. Association of American Plant Food Control Officials (AAPFCO). (1997). Official Publication No. 50, T-29. West Lafayette, IN, USA: AAPFCO.
  • 23. Liu, G., Zotarelli, L., Li, Y., Dinkins, D., Wang, Q. & Ozores-Hampton, M. (2014). Controlled-Release and Slow Fertilizers as Nutrient Management Tools, Florida, Horticultural Sciences Department, UF/IFAS Extension, USA.
  • 24. Akelah, A., (1996). Novel utilizations of conventional agrochemicals by controlled release formulations. Mater. Sci. Eng. C 4, 83–98.
  • 25. Zhong, K., Lin, Z.T., Zheng, X.L., Jiang, G.B., Fang, Y.S., Mao, X.Y. & Liao, Z.W. (2013). Starch derivative-based superabsorbent with integration of water retaining and controlled-release fertilizers. Carbohyd. Polym. 92(2), 1367–1376.
  • 26. Perez-Garcia, S., Fernandez-Perez, M., Villafranca-Sanchez, M., Gonzales-Pradas, E. & Flores-Cespedes F. (2007). Controlled release of ammonium nitrate from ethylcellulose coated formulations. Ind. Eng. Chem. Res. 46, 3304–3311.
  • 27. Fernandez-Perez, M., Garrido-Herrera, F. J., Gonzalez--Pradas, E., Villafranca-Sanchez, M. & Flores-Cespedes, F. (2008). Lignin and ethylcellulose as polymers in controlled release formulations of urea. J. Appl. Polym. Sci. 108, 3796–3803.
  • 28. Ni, B., Liu, M. & Liu, S. (2009). Multifunctional slow--release urea fertilizer from ethylcellulose and superabsorbent coated formulation. Chem. Eng. J. 15(3), 892–898.
  • 29. Zheng, W., Pan, G. & Chen, J. (2016). Study on preparation and slow-release properties of coated urea fertilizer by using non-metallic minerals and ethylcellulose. Acta Mineralogica Sinica 36, 247–252.
  • 30. Hussain, R., Devi, R. & Maji T. (2012). Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iranian Polym. J. 21(8), 473–479.
  • 31. Melaj, M.A. & Daraio, M.E. (2013). Preparation and characterization of potassium nitrate controlled-release fertilizers based on chitosan and xanthan layered tablets. J. Appl. Polym. Sci. 130, 2422–2428.
  • 32. Lubkowski, K. (2014). Coating fertilizer granules with biodegradable materials for controlled fertilizer release. Environ. Eng. Manage. J . 13(10), 2573–2581.
  • 33. Frohoff-Hulsmann, M.A., Schmitz, A. & Lippold B.C. (1999). Aqueous ethyl cellulose dispersions containing plasticizers of different water solubility and hydroxypropyl methylcellulose as coating material for diffusion pellets, Int. J. Pharmaceut. 177 (1), 69–82.
  • 34. Muschert, S., Siepmann, F., Leclercq, B., Carlin, B. & Siepmann, J. (2010). Simulated food effects on drug release from ethylcellulose: PVA–PEG graft copolymer-coated pellets, Drug Dev. Ind. Pharm. 36(2), 173–179.
  • 35. Muschert, S., Siepmann, F., Leclercq, B, Siepmann, J. (2010). Dynamic and static curing of ethylcellulose: PVA-PEG graft copolymer film coatings. Eur. J. Pharm. Biopharm. 78(3), 455–461. DOI: 10.1016/j.ejpb.2011.02.010.
  • 36. European Standard EN 13266. Slow-release fertilizers – Determination of the release of the nutrients – Method for coated fertilizers. European Committee for Standardization, Brussels, 2001.
  • 37. Lubkowski, K., Smorowska, A., Grzmil, B. & Kozłowska, A. (2015). Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly(butylene succinate) and dimerized fatty acid. J. Agric. Food Chem . 63(10) 2597–2605.
  • 38. Kelbaliyev, G.I., Samedli, V.M., Samedov, M.M. & Kasimova, R.K. (2013). Experimental study and calculation of the effect of intensifying additives on the strength of superphosphate granules. Russ. J. Appl. Chem. 86, 1478–1482.
  • 39. Nie, X., Besant, R.W. & Evitts, R.W. (2008). An experimental study of moisture uptake and transport in a bed of urea particles. Granul. Matter 10, 301–308.
  • 40. Clayton, W.E. (1995). Physical Properties of Fertilizers, Modern Techniques in Fertilizer Distribution and Handling. Muscle Shoals, USA.
  • 41. Bortolin, A., Aouada, F.A., de Moura, M.R., Ribeiro, C., Longo, E. & Mattoso, L.H.C. (2012). Application of polysaccharide hydrogels in adsorption and controlled-extended release of fertilizers processes. J. Appl. Polym. Sci. 123, 2291–2298.
  • 42. Calabria, L., Vieceli, N., Bianchi, O., de Oliveira, R.V.B., Filho, I.N. & Schmidt, V. (2012). Soy protein isolate/poly(lactic acid) injection moulded biodegradable blends for slow release of fertilizers. Ind. Crops Prod. 36, 41–46.
  • 43. Pereira, E.I., Minussi, F.B., da Cruz, C.C.T., Bernardi, A.C.C. & Ribeiro, C. (2012). Urea-montmorillonite-extruded nanocomposites: a novel slow-release material. J. Agric. Food Chem. 60, 5267–5272.
  • 44. Costa, M.M.E., Cabral-Albuquerque, E.C.M., Alves, T.L.M., Pinto, J.C. & Fialho, R.L. (2013). Use of polyhydroxy-butyrate and ethyl cellulose for coating of urea granules. J. Agric. Food Chem. 61, 9984–9991.
  • 45. Bortolin, A., Aouada, F.A., Mattoso, L.H.C. & Ribeiro, C. (2013). Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergetic effects for the slow release of fertilizers. J. Agric. Food Chem. 61, 7431&–7439.
  • 46. Du, C., Zhou, J. & Shaviv, A. (2006). Release Characteristics of Nutrients from Polymer-coated Compound Controlled Release Fertilizers. J. Polym. Environ. 14, 223–230.
  • 47. Huett, D.O. & Gogel, B.J. (2000). Longevities and nitrogen, phosphorus and potassium release patterns of polymer-coated controlled-release fertilizers at 30°C and 40°C. Commun. Soil Sci. Plant Anal. 31, 959–973.
  • 48. Shoji, S. & Gandeza, A.T. (1992). Controlled release fertilizers with polyolefin resin coating. Kanno Printing Co. Ltd. Sendai, Japan.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89b99475-7770-479a-8508-85c9d3623972
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.