PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metoda współczynników niepełności wiedzy w systemach wspomagania decyzji

Identyfikatory
Warianty tytułu
EN
The methods of computing the knowledge incompleteness factor in decision support system
Języki publikacji
PL
Abstrakty
PL
W artykule zaproponowano metodę współczynników niepełności (IF) służących do modelowania niepełności wiedzy w systemach wspomagania decyzji. Przedstawiono miarę współczynnika niepełności wiedzy oraz wyniki przeprowadzonych eksperymentów i ich interpretację.
EN
The paper consists of the proposition of using the method of incompleteness factors (IF) in order to model the incompleteness of knowledge in decision support systems. The authors are using cluster analysis methods along with the incompleteness factors to reason in systems with incomplete knowledge.
Czasopismo
Rocznik
Strony
227--238
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • Uniwersytet Śląski, Instytut Informatyki, ul. Będzińska 39, 41-200 Sosnowiec, Polska
autor
  • Uniwersytet Śląski, Instytut Informatyki, ul. Będzińska 39, 41-200 Sosnowiec, Polska
Bibliografia
  • 1. Chandru V., Hooker J.: Optimization methods for logical inference. John Wiley & Sons, New York 1999.
  • 2. Kaufman L., Rousseeuw P. J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York 1990.
  • 3. Myatt G.: Making Sense of Data a Practical Guide to Exploratory Data Analysis and Data Mining. John Wiley and Sons, Inc., New Jersey 2007.
  • 4. Salton G.: Automatic Information Organization and Retreival. McGraw-Hill, 1975.
  • 5. Bazan J., Szczuka M., Wróblewski J.: A new version of rough set exploration system, [in:] Third International Conference on RSCTC. Springer-Verlag, Malvern, PA 2002.
  • 6. Pawlak Z.: Rough set approach to knowledge-based decision suport. European Journal of Operational Research, 1997.
  • 7. Frank A., Asuncion A.: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml], School of Information and Computer Science, Irvine, University of California, CA 2010.
  • 8. Buchanan B. G., Shortliffe E. H.: Rule Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Reading, Addison-Wesley, MA 1984.
  • 9. Dempster A. P.: A generalization of Bayesian inference. Journal of the Royal Statistical Society, Series B 30, 1968.
  • 10. Shafer G.: A Mathematical Theory of Evidence. Princeton University Press, 1976.
  • 11. Reichgelt H.: Knowledge Representation: An AI Perspective. Ablex Publishing Corporation, New Jersey, USA 1991.
  • 12. Wakulicz-Deja A., Nowak-Brzezińska A., Jach T.: Inference processes using incomplete knowledge in Decision Support Systems – chosen aspects. Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, 2012.
  • 13. Jach T., Nowak-Brzezińska A.: Wybrane aspekty wnioskowania w systemach z wiedzą niepełną. Studia Informatica, Vol. 33, No. 2A, Gliwice 2012.
  • 14. Jach T., Nowak-Brzezińska A.: Wnioskowanie w systemach z wiedzą niepełną. Studia Informatica, Vol. 32, No. 2A, Gliwice 2011.
  • 15. Wakulicz-Deja A., Nowak-Brzezińska A., Jach T.: Inference processes in decision support systems with incomplete knowledge. Rough Sets and Knowledge Technology, Lecture Notes in Computer Science, Springer, Berlin/Heidelberg 2011.
  • 16. Nowak-Brzezińska A., Jach T., Xięski T.: Wybór algorytmu grupowania a efektywność wyszukiwania dokumentów. Studia Informatica, Vol. 31, No. 2A, 2010.
  • 17. Nowak-Brzezińska A., Jach T., Xięski T.: Analiza hierarchicznych i niehierarchicznych algorytmów grupowania dla dokumentów tekstowych. Studia Informatica, Vol. 30, No. 2A, Gliwice 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89ab39c7-5c5c-4fde-baf7-614a6296d615
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.