PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aluminum alloy welding in automotive industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the possibilities of using light alloy components in vehicle construction. Material 6082 was chosen for use in responsible structural components. The structure and strength parameters of the material in the delivery state were tested. Tested material parameters were compared with normative requirements. The purpose of the paper is to check the mechanical properties of aluminum alloy welded joints by various processes and parameters. Until now, welding of 6082 alloy did not give good and repeatable results. Because of that, two welding methods were analyzed (MIG and TIG) in the field of the quality of welds, strength of welded joints, and material structures obtained as a result of welding with various parameters.
Czasopismo
Rocznik
Strony
67--78
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Silesian University of Technology Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology Krasińskiego 8, 40-019 Katowice, Poland
autor
  • Novar Sp. z o. o. Towarowa 2, 44-100 Gliwice, Poland
Bibliografia
  • 1. Kulekci, M.K. Magnesium and its alloys applications in automotive industry. International Journal of Advanced Manufacturing Technology. 2008. No. 39. P. 851-865.
  • 2. Hirsch, J. Automotive trends in Aluminium - The European perspective. Materials Forum. 2004. Vol. 28. No. 1. P. 15-23.
  • 3. Muraoka, Y. & Miyaoka, H. Development of an all-aluminum automotive body. Journal of Materials Processing Technology. 1993. No. 38. P. 655-674.
  • 4. Kutsuna, M. & Kitamura, S. & Shibata, K. & Sakamoto, H. & Tsushima, K. Improvement of the joint performance in laser welding of aluminium alloys. Welding in the World. 2006. Vol. 50. Nos. 1-2, P. 22-27.
  • 5. AlShaer, A. W. & Li, L. & Mistry A. Effect of filler wire properties on porosity formation in laser welding of AC-170PX aluminium alloy for light-weight automotive component manufacture. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2015. Vol. 231. No. 6. P. 1-13.
  • 6. Arun, N. & Cijo M. & Joby Joseph. Influence of Gas Tungsten Arc welding parameters in Aluminium 5083 alloy. Inter. J. Eng. Sci. Inno. Technol. 2013. Vol. 2. No. 5. P. 269-277.
  • 7. Kumar, A. & Sundarrajan, S. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments. Materials & Design. 2009. Vol. 30. No. 4. P. 1288-1297.
  • 8. Indira, R. M. & Marpu, R.N. Effect of Pulsed Current TIG Welding Parameters on Mechanical Properties of J-Joint Strength of AA6351. The International Journal of Engineering and Science (IJES). 2012. Vol. 1. No. 1. P. 1-5.
  • 9. Lakshman, S. & Rajeshwar, S. & Naveen, K.S. & Davinder S., & Pargat S. An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminum Alloy. International Scholarly and Scientific Research and Innovation. 2013. Vol. 7. P. 99-107.
  • 10. Yao, L. & Wenjing, W. & Jijia, X. & Shouguang, S & Liang, W. & Yuan, M. & Yujii, W. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding. Materials Science Engineering. 2012. Vol. 549. P. 7-13.
  • 11. Neuer Audi Space Frame mit hohen Anteilen an Aluminium und CKF. Aluminiumkarosserien. 2015. Vol. 3. Avaliable at: www.audi-technology-portal.com. [In German: New Audi Space Frame with increased content of aluminum and CKF. Aluminum car bodies. Vol. 3].
  • 12. Wadelton, F. Aluminum 7005-6061 custom frames. Bicycle fabrication. Avaliable at: www.frankthewelder.com.
  • 13. Auto news and picture galleries. Available at: http://www.caricos.com.
  • 14. Haboudou, A. & Peyre, P. & Vannes, A. B. & Peix, G. Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys. Materials Science and Engineering. 2003. Vol. 363. No. 1-2. P. 40-52.
  • 15. Pao, P. S. & Jones H. N. & Cheng S. F. & Feng C. R. Fatigue crack propagation in ultrafine grained Al-Mg alloy. International Journal of Fatigue. 2005. Vol. 27. P. 1164-1169.
  • 16. Cavaliere, P. Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. International Journal of Fatigue. 2009. Vol. 31. P. 1476-1489.
  • 17. Sabirov, I. & Murashkin, M. Y. & Valiev, R. Z. Nano-structured aluminium alloys produced by severe plastic deformation. New horizons in development. Materials Science & Engineering 2013. Vol. 560. P. 1-24.
  • 18. Carpinteri A. & Spagnoli A. Multiaxial high-cycle fatigue criterion for hard metals. International Journal Fatigue. Vol. 23. 2001. P. 135-145.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89a849d7-c4aa-4e6d-9cb9-f17c23cdc2f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.