PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solution of the harmonic oscillator equation in cylindrical coordinates with fractional boundary conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The boundary value problem consisting of homogeneous second-order ordinarydifferential equation and the classical and/or fractional boundary conditions is considered.Such an equation can describe the motion of the harmonic oscillator in the one-dimensional cylindrical coordinate. The general solution of this equation includes the Bessel functions of the first and second kinds. The particular solutions of the equation are determined on the basis of various constructions of boundary conditions that, in particular, take into account the left- and right-side fractional derivatives defined in the Riemann-Liouville sense. Also, three illustrative examples of particular solutions on the plots are shown.
Rocznik
Strony
112--119
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Department of Mathematics, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • 1. Abell, M.L., & Braselton, J.P. (2014). Introductory Differential Equations with Boundary Value Problems, 4th ed. Academic Press, Elsevier.
  • 2. Boyce, W.E., DiPrima, R.C., & Meade, D.B. (2017). Elementary Differential Equations and Boundary Value Problems, 11th ed. John Wiley & Sons.
  • 3. Coccolo, M., Seoane, J.M., & Sanjuán, M.A.F. (2024). Fractional damping induces resonant behavior in the Duffing oscillator. Communications in Nonlinear Science and Numerical Simulation, 133, 107965.
  • 4. Kukla, S., Siedlecka, U., & Ciesielski M. (2022). Fractional order dual-phase-lag model of heat conduction in a composite spherical medium. Materials, 15(20), 7251.
  • 5. Siedlecka, U. (2023). Modelling of the solar heating of a multi-layered spherical cone. Journal of Applied Mathematics and Computational Mechanics, 22(4), 53-63.
  • 6. Chen, W.K. (2005). The Electrical Engineering Handbook. Academic Press.
  • 7. Klimek, M., Ciesielski, M., & Blaszczyk, T. (2022). Exact and numerical solution of the fractional Sturm-Liouville problem with Neumann boundary conditions. Entropy, 24(2), 143.
  • 8. Rivero, M., Trujillo, J.J., & Velasco M.P. (2013). A fractional approach to the Sturm-Liouville problem. Central European Journal of Physics, 11(10), 1246-1254.
  • 9. Al-Jararha, M., Al-Refai, M., & Luchko, Y. (2024). A self-adjoint fractional Sturm-Liouville problem with the general fractional derivatives. Journal of Differential Equations, 413, 110-128.
  • 10. Currie, I.G. (2016). Fundamental Mechanics of Fluids, CRC Press.
  • 11. Kilbas, A.A., Srivastava, H.M., & Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier.
  • 12. Podlubny, I. (1999). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Vol. 198). Elsevier.
  • 13. Ciesielski, M., & Blaszczyk, T. (2018). An exact solution of the second order differential equation with the fractional/generalised boundary conditions. Advances in Mathematical Physics, Article ID 7283518.
  • 14. Grodzki, G. (2023). Numerical approximation of the Riemann-Liouville fractional integrals using the Akima spline interpolation. Journal of Applied Mathematics and Computational Mechanics, 22(4), 30-43.
  • 15. Siedlecki, J. (2020). The fourth-order ordinary differential equation with the fractional initial/ boundary conditions. Journal of Applied Mathematics and Computational Mechanics, 19(1), 79-87.
  • 16. Polyanin, A.D., & Zaitsev, V.F. (2017). Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. 3rd ed. Chapman and Hall/CRC.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89a6b279-ff6b-4fcb-a11c-59aca0849f03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.