PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bending and free vibration analysis of porous functionally graded sandwich plate with various porosity distributions using an extended layerwise theory

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, for the first time, the bending and free vibration analysis of porous functionally graded sandwich plates with various porosity distributions is investigated using an efficient layerwise model. The present model, proposed recently by the authors, supposes a first-order displacement field for the two face sheets and a higher-order displacement field for the core, thereby ensuring the displacement continuity at the layer's interface. Unlike the conventional layerwise models, the number of degrees of freedom is fixed and does not increase when increasing the number of layers. This is a very important feature compared to the conventional layerwise models and facilitates significantly the engineering analysis. Three different types of porosity distribution including even, logarithmic-uneven, and linear-uneven porosities are considered. The material properties of the FGM sandwich porous plate are graded continuously through the thickness direction according to a power-law function. The numerical analysis is carried out by using an efficient C0 continuous eight-node quadrilateral isoparametric element developed for this purpose. The governing equations are derived according to Hamilton’s principle and solved by employing the finite element method. The robustness and accuracy of the proposed formulation are ascertained by comparing its results with those available by other researchers in the existing literature. Further, a comprehensive parametric study is examined in detail to show the effects of material distribution, aspect ratios, porosity coefficient, side-to-thickness ratio, porosity distribution, core-to-face thickness ratio, boundary conditions, volume fraction index, modes shapes on the bending and free vibration behaviors of symmetric and non-symmetric FGM porous sandwich plate. The numerical results show that these parameters play significant roles in the bending and free vibration behaviors of the FGM sandwich porous plates. Many new results are also reported, which will serve as a benchmark for future analysis of FGM sandwich plates with porosity.
Rocznik
Strony
art. no. e15, 2023
Opis fizyczny
Bibliogr. 71 poz., rys., tab., wykr.
Twórcy
  • Laboratoire de Recherche en Genie Civil, LRGC , Universite de Biskra, B.P. 145, R.P. 07000 Biskra, Algeria
  • Laboratoire d’Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli, B.P. 305, R.P. 29000 Mascara, Algerie
autor
  • Department of Civil and Environmental Engineering, The NorthCap University, Gurugram, Haryana 122017, India
  • Laboratoire de Recherche en Genie Civil, LRGC , Universite de Biskra, B.P. 145, R.P. 07000 Biskra, Algeria
  • Laboratoire d’Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli, B.P. 305, R.P. 29000 Mascara, Algerie
  • Division of Mechanics, Civil Engineering Department, Akdeniz University, Antalya, Turkey
autor
  • Department of Civil and Environmental Engineering, The NorthCap University, Gurugram, Haryana 122017, India
Bibliografia
  • 1. Saleh B, Jiang J, Fathi R, Al-hababi T, Xu Q, Wang L, Song D, Ma A. 30 Years of functionally graded materials: an overview of manufacturing methods. Appl Future Chall Compos Part B Eng. 2020;201:108376. https://doi.org/10.1016/j.compositesb.2020.108376.
  • 2. Haan C, Barfield B, Hayes JJDH, Catchments SS. Sediment control structures. 1994. p. 359-375.
  • 3. Bansiddhi A, Dunand DC. 7-Titanium and NiTi foams for bone replacement. In: Mallick K, editor. Bone Substitute Biomaterials. Woodhead Publishing: Sawston; 2014. p. 142-79. https://doi.org/10.1533/9780857099037.2.142.
  • 4. Cao S, Yu J. Chapter 15-photocatalysts based on polymeric carbon nitride for solar-to-fuel conversion. In: Yu J, Jaroniec M, Jiang C, editors. Interface science and technology, vol. 31. New York: Elsevier; 2020. p. 475-507. https://doi.org/10.1016/B978-0-08-102890-2.00015-4.
  • 5. Liu PS, Chen GF. Chapter three-application of porous metals. In: Liu PS, Chen GF, editors. Porous materials. Boston: Butterworth-Heinemann; 2014. p. 113-88. https://doi.org/10.1016/B978-0-12-407788-1.00003-4.
  • 6. Rashidi S, Esfahani JA, Hormozi F. Classifications of porous materials for energy applications. Encyclopedia of Smart Materials. 2022;2:774-85. https://doi.org/10.1016/B978-0-12-803581-8.11739-4.
  • 7. Michailidis N, Tsouknidas A, Lefebvre L-P, Hipke T, Kanetake N. Production, characterization, and applications of porous materials. Adv Mater Sci Eng. 2014;2014:263129.
  • 8. Ishizaki K, Komarneni S, Nanko M. Applications of porous materials. In: Ishizaki K, Komarneni S, Nanko M, editors. Porous materials: process technology and applications. Boston: Springer; 1998. p. 181-201.
  • 9. Daikh AA, Houari MSA, Belarbi MO, Mohamed SA, Eltaher MA. Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory. Defence Technology. 2021;18(10):1778-809. https://doi.org/10.1016/j.dt.2021.09.011.
  • 10. Garg A, Chalak HD, Zenkour AM, Belarbi MO, Sahoo R. Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore. Thin Walled Struct. 2022;170:108626.
  • 11. Belarbi M-O, Khechai A, Bessaim A, Houari M-S-A, Garg A, Hirane H, Chalak H. Finite element bending analysis of symmetric and non-symmetric functionally graded sandwich beams using a novel parabolic shear deformation theory. Proc Inst Mech Eng Part L J Mater Des Appl. 2021. https://doi.org/10.1177/14644207211005096.
  • 12. Sayyad AS, Ghugal YM. Modeling and analysis of functionally graded sandwich beams: a review. Mech Adv Mater Struct. 2019;26(21):1776-95.
  • 13. Garg A, Belarbi M-O, Chalak HD, Chakrabarti A. A review of the analysis of sandwich FGM structures. Compos Struct. 2021;258:113427.
  • 14. Wang YQ, Wan YH, Zhang YF. Vibrations of longitudinally traveling functionally graded material plates with porosities. Eur J Mech A Solids. 2017;66:55-68.
  • 15. Wattanasakulpong N, Ungbhakorn V. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp Sci Technol. 2014;32(1):111-20.
  • 16. Arshid E, Khorshidvand AR. Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin Walled Struct. 2018;125:220-33.
  • 17. Carrera E. Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch Comput Methods Eng. 2002;9(2):87-140.
  • 18. Sayyad AS, Ghugal YM. On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results. Compos Struct. 2015;129:177-201.
  • 19. Zhou K, Huang X, Tian J, Hua H. Vibration and flutter analysis of supersonic porous functionally graded material plates with temperature gradient and resting on elastic foundation. Compos Struct. 2018;204:63-79.
  • 20. Li H, Pang F, Chen H, Du Y. Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method. Compos Part B Eng. 2019;164:249-64.
  • 21. Chen D, Yang J, Kitipornchai S. Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos Struct. 2015;133:54-61.
  • 22. Zhang Y, Jin G, Chen M, Ye T, Yang C, Yin Y. Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core. Compos Struct. 2020;244:112298.
  • 23. Xue Y, et al. Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach. Int J Mech Sci. 2019;152:346-62.
  • 24. Rezaei AS, Saidi AR, Abrishamdari M, Mohammadi MHP. Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach. Thin Walled Struct. 2017;120:366-77.
  • 25. Medani M, et al. Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel Compos Struct. 2019;32(5):595-610.
  • 26. Tran TT, Pham Q-H, Nguyen-Thoi T. Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method. Def Technol. 2021;17(3):971-86.
  • 27. Reddy JN. On refined theories of composite laminates. Meccanica. 1990;25(4):230-8.
  • 28. Hirane H, Belarbi M-O, Houari MSA, Tounsi A. On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates. Eng Comput. 2021. https://doi.org/10.1007/s00366-020-01250-1.
  • 29. Belarbi M-O, Houari MSA, Hirane H, Daikh AA, Bordas SPA. On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory. Compos Struct. 2022;279:114715.
  • 30. Pai PF. A new look at shear correction factors and warping functions of anisotropic laminates. Int J Solids Struct. 1995;32(16):2295-313.
  • 31. Lim T-K, Kim J-H. Thermo-elastic effects on shear correction factors for functionally graded beam. Compos Part B Eng. 2017;123:262-70.
  • 32. Daikh AA. Temperature dependent vibration analysis of functionally graded sandwich plates resting on Winkler/Pasternak/Kerr foundation. Mater Res Express. 2019;6(6):065702.
  • 33. Daikh AA, Drai A, Bensaid I, Houari MSA, Tounsi A. On vibration of functionally graded sandwich nanoplates in the thermal environment. J Sandw Struct Mater. 2021;23(6):2217-44. https://doi.org/10.1177/1099636220909790.
  • 34. Belarbi M-O, Houari M-S-A, Daikh AA, Garg A, Merzouki T, Chalak HD, Hirane H. Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory. Compos Struct. 2021;264:113712. https://doi.org/10.1016/j.compstruct.2021.113712.
  • 35. Belarbi M-O, Garg A, Houari M-S-A, Hirane H, Tounsi A, Chalak HD. A three-unknown refined shear beam element model for buckling analysis of functionally graded curved sandwich beams. Eng Comput. 2021. https://doi.org/10.1007/s00366-021-01452-1.
  • 36. Daikh AA, Zenkour AM. Bending of functionally graded sandwich nanoplates resting on pasternak foundation under different boundary conditions. J Appl Comput Mech. 2020;6(Special Issue):1245-59.
  • 37. Daikh AA, Houari MSA, Belarbi MO, Chakraverty S, Eltaher MA. Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates. Eng Comput. 2022;38(3):2533-54. https://doi.org/10.1007/s00366-021-01413-8.
  • 38. Sayyad AS, Ghugal YM. A unified five-degree-of-freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates. J Sandw Struct Mater. 2021;23(2):473-506. https://doi.org/10.1177/1099636219840980.
  • 39. Yahia SA, Atmane HA, Houari MSA, A. J. S. E. Tounsi, and Mechanics. Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct Eng Mech Int J. 2015;53(6):1143-65.
  • 40. Barati MR, Shahverdi H. Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions. J Fluids Struct. 2017;73:125-36.
  • 41. Demirhan PA, Taskin V. Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach. Compos Part B Eng. 2019;160:661-76.
  • 42. Daikh AA, Zenkour AM. Effect of porosity on the bending analysis of various functionally graded sandwich plates. Mater Res Express. 2019;6(6): 065703.
  • 43. Daikh AA, Zenkour AM. Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory. Mater Res Express. 2019;6(11):115707.
  • 44. Zenkour AM. A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Compos Struct. 2018;201:38-48.
  • 45. Zenkour AM, Aljadani MH. Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates. Eur J Mech A Solids. 2019;78:103835.
  • 46. Gupta A, Talha M. Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. Int J Struct Stabil Dyn. 2018;18(01):1850013.
  • 47. Shahsavari D, Shahsavari M, Li L, Karami B. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp Sci Technol. 2018;72:134-49.
  • 48. Merdaci S, Belghoul H. High-order shear theory for static analysis of functionally graded plates with porosities. Comptes Rendus Mecanique. 2019;347(3):207-17.
  • 49. Xie K, Wang Y, Niu H, Chen H. Large-amplitude nonlinear free vibrations of functionally graded plates with porous imperfection: a novel approach based on energy balance method. Compos Struct. 2020;246:112367.
  • 50. Mashat DS, Zenkour AM, Radwan AF. A quasi-3D higher-order plate theory for bending of FG plates resting on elastic foundations under hygro-thermo-mechanical loads with porosity. Eur J Mech A Solids. 2020;82:103985.
  • 51. Singh SJ, Harsha SP. Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov’s method: a semi-analytical approach. Thin Walled Struct. 2020;150:106668.
  • 52. Liang C, Wang YQ. A quasi-3D trigonometric shear deformation theory for wave propagation analysis of FGM sandwich plates with porosities resting on viscoelastic foundation. Compos Struct. 2020;247:112478.
  • 53. Zhao J, Choe K, Xie F, Wang A, Shuai C, Wang Q. Three-dimensional exact solution for vibration analysis of thick functionally graded porous (FGP) rectangular plates with arbitrary boundary conditions. Compos Part B Eng. 2018;155:369-81.
  • 54. Adhikari B, Dash P, Singh BN. Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory. Compos Struct. 2020;251:112597.
  • 55. Guellil M, et al. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation. Steel Compos Struct. 2021;38(1):1-15.
  • 56. Tahir SI, Chikh A, Tounsi A, Al-Osta MA, Al-Dulaijan SU, Al-Zahrani MM. Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Compos Struct. 2021;269:114030.
  • 57. Van Vinh P, Huy LQ. Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory. Def Technol. 2021. https://doi.org/10.1016/j.dt.2021.03.006.
  • 58. Sahoo R, Singh BN. Assessment of inverse hyperbolic zigzag theory for buckling analysis of laminated composite and sandwich plates using finite element method. Arch Appl Mech. 2021;91(1):169-86.
  • 59. Liu N, Jeffers AE. Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory. Compos Struct. 2017;176:143-53.
  • 60. Pandey S, Pradyumna S. Analysis of functionally graded sandwich plates using a higher-order layerwise theory. Compos Part B Eng. 2018;153:325-36.
  • 61. Liu M, Cheng Y, Liu J. High-order free vibration analysis of sandwich plates with both functionally graded face sheets and functionally graded flexible core. Compos Part B Eng. 2015;72:97-107.
  • 62. Dorduncu M. Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory. Thin Walled Struct. 2020;146:106468.
  • 63. Di Sciuva M, Sorrenti M. Bending and free vibration analysis of functionally graded sandwich plates: an assessment of the Refined Zigzag Theory. J Sandw Struct Mater. 2021;23(3):760-802. https://doi.org/10.1177/1099636219843970.
  • 64. Garg A, Chalak HD, Belarbi M-O, Zenkour AM. Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams. Mech Adv. Mater Struct. 2021;1-23. https://doi.org/10.1080/15376494.2021.19319 93.
  • 65. Burlayenko VN. A continuum shell element in layerwise models for free vibration analysis of FGM sandwich panels. Contin Mech Thermodyn. 2021;33(4):1385-407.
  • 66. Liew KM, Pan ZZ, Zhang LW. An overview of layerwise theories for composite laminates and structures: development, numerical implementation and application. Compos Struct. 2019;216:240-59.
  • 67. Liu B, Ferreira A, Xing Y, Neves A. Analysis of functionally graded sandwich and laminated shells using a layerwise theory and a differential quadrature finite element method. Compos Struct. 2016;136:546-53.
  • 68. Garg A, Chalak HD, Belarbi M-O, Chakrabarti A, Houari M-S-A. Finite element-based free vibration analysis of power-law, exponential and sigmoidal functionally graded sandwich beams. J Inst Eng (India) Ser C. 2021;102:167-1201. https://doi.org/10.1007/s40032-021-00740-5.
  • 69. Pandey S, Pradyumna S. Thermal shock response of porous functionally graded sandwich curved beam using a new layerwise theory. Mech Based Des Struct Mach. 2021;1-26. https://doi.org/10.1080/15397734.2021.1888297.
  • 70. Zenkour AM. A comprehensive analysis of functionally graded sandwich plates: part 1-deflection and stresses. Int J Solids Struct. 2005;42(18):5224-42.
  • 71. Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Jorge RMN, Soares CMM. Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects. Adv Eng Softw. 2012;52:30-43.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89a179eb-fe37-4ede-8175-f2e23b581236
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.