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An exponential Diophatine equation on Triangular
numbers

Abstract Looking to the two remarkable identities concerning triangular numbers
Tn+1 − Tn = n + 1 and T 2

n+1 − T 2
n = (n + 1)3, we can extend these equations

to the exponential Diophantine equation Tx
n+1 − Tx

n = (n + 1)y for some positive
integers x, y. In this papaer, we show that the above equation has only the solutions
(x, y) = (1, 1) or (2, 3).
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1. Introduction. By a triangular number we call the number of the
form

Tn = 1 + 2 + ...+ n =
n(n+ 1)

2
=

(
n+ 1

2

)
when n is a natural number. The number Tn can be interpreted as a number
of circles necessary to build an equilateral triangle with side of length n. Dio-
phantine equations related to Triangular numbers has a long story. Walcaw
Sierpinski in the booklet [12] and in the papers [10, 11, 12] gave many inter-
esting results concerning the problem of solvability of diophantine equations
related to triangular numbers. Hamtat and Behloul (2017) had used matrix
theory to give some famillies of integer solutions to the equation

Tx + Ty = Tz,

when x,y and z are positive integers.
In triangular numbers, we have some remarkables identities such

Tn+1 − Tn = n+ 1,

and
T 2
n+1 − T 2

n = (n+ 1)3.

So, a natural question can be asked, for which values of positive integers
(x, y), the exponential Diophantine equation

T x
n+1 − T x

n = (n+ 1)y. (1)
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holds for all positive integers n ?
An exponential Diophantine equation is an equation of the form

ax + by = cz. (2)

where a,b and c are pairewise coprime positive integers. The equation (2) has
a very rich story. In 1933, K. Mehler [8] has proved that the equation (2) has
only many finitly of integer solutions, under the hypothesis that a, b, c > 1.
His method is a p-adic analogue of that given by Thue-Siegel, so it is ineffective
in the sense that it gives no indication on the number of possible solutions. A
few years later, Gel’fond [4] gave an effective result for solutions of (2). His
method was based on Baker’s theory, which uses linear forms in the logarithms
of algebraic numbers. In 1956, L. Jésmanowicz [6] conjectured that if a, b, c
are Pythagorean numbers, i.e., positive integers satisfying a2 + b2 = c2, then
the Diophantine equation ax + by = cz has only the positive integral solution
(x, y, z) = (2, 2, 2). This conjecture have been solved for many special cases.
Different conjectures concerning (2) were identified and discussed. Terai [13]
proposed that if a, b, c, p, q, r are fixed positive integers satisfying ap+ bq = cr

with a, b, c, p, q,r ≥ 2 and gcd(a, b) = 1, then equation (2) has only the
trivial solution (x, y, z) = (p, q, r) except for a handful of triples (a, b, c). This
conjecture has been proved to be true in many special cases. However, it is
still unsolved in its full generality.

The generalisation of the two above identities of triangular numbers give
us an exponential Diophantine equation of the form of (2). (1) considred as
an exponential Diophantine equation, we shall prove the following result

Theorem 1 (Main theorem) Equation (1) has only the positive integer solu-
tions (x, y) = (1, 1), (2, 3). 2

The organisation of this paper is as follows: In Section 2, we recall a
result due to W.J. LeVesque [7]. Also we prove a result by the means of
Lucas sequences. These results are useful for the proof of our main theorem
that will be shown in Section 3. First, for n = 1, LeVeque’s result helps to
find the solutions (1, 1) and (2, 3). Then we use an elementary method to
prove that equation (1) has only the solutions (1, 1) and (2, 3), for n ≥ 2.

2. Some Lemmas
First, we recall a simplified result due to LeVesque [7]

Lemma 2.1 For a fixed integers a > 1 and b > 1, the Diophnatine equation

ax − by = 1.

has just the two solutions (1, 1) and (2, 3) if a, b = 2. In all other cases, it
has at most one solution.
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In 2016, Miyazaki, Togbé and Yuan [9] gave the following result in :

Lemma 2.2 Suppose that a > 1 is an odd positive integer. Then the Dio-
phantine equation

ax + 2y = (a+ 2)z. (3)

has only the positive solution (x, y, z) = (1, 1, 1), whenever neither a = 2k−1−
1 with an integer k ≥ 3 nor a = 89. If a = 2k−1 − 1 or a = 89, then the
additional solutions are given by (2, k + 1, 2), (1, 13, 2), respectively.

Let α, β be algebraic integers. If α+β and αβ are non-zero coprime rational
integers and α

β is not a root of unity, then (α, β) is called a Lucas pair. Given
a Lucas pair (α, β), one defines the corresponding sequence of Lucas numbers
by

Un(α, β) =
αn − βn

α− β

A prime p is called a primitive divisor of Un(α, β) if p|Un and

p ∤ (α2, β2)U1U2...Un−1.

An important problem is the existence of primitive divisor of Lucas num-
bers. Bilu et al. (2001) solved the problem. The remaining cases were solved
by Abouzaid (2006). The case when α, β are integers was solved by Birkhoff–
Vandiver [3] and Zsigmondy [14] in 1904 and 1892, independently. They
proved that Un(α, β) has a primitive divisor if n > 6. Following Lemma is an
early version of the primitive divisor theorem for integers which is known as
Zsigmondy’s theorem [14].

Lemma 2.3 Let a > b ≥ 1 be a be relatively prime integers and let (Un)n≥1

be a sequence defined as
Un(a, b) = an − bn

If n > 1 then Un has a primitive divisor, except for (a, b, n) = (2, 1, 6) or
n = 2 and a+ b = 2k for some positive integer k.

3. Proof of our Theorem

In this section, we prove our theorem, we distinguish two cases from the parity
of n.

When n = 1, the equation (1) becomes

3x − 1 = 2y

it has only two positive solutions (x, y) = (1, 1), (2, 3) by Lemma 2.1 . Now
we suppose that n ≥ 2.
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Case 1: n is even.
Lets put n = 2m with m ≥ 1 We rewrite the equation (1) into the form

((2m+ 1)(m+ 1))x − (m(2m+ 1))x = (2m+ 1)y, (4)

1- If x = y, the the above equation (4) becomes

(m+ 1)x −mx = 1,

if x ≥ 2, then we get

1 = (m+ 1)x −mx ≥ (m+ 1)2 −m2 = 2m+ 1,

and this is a contradiction since m ≥ 1, then we get x = y = 1. Therefore we
obtain the first solution of (1).

2- If x > y, then the equation (4) becomes

(2m+ 1)x−y((m+ 1)x −mx) = 1,

one can see that is equivalent to

(2m+ 1)x−y = 1,

and this is impossile since x > y.
3- If x < y, in this case the equation (4) becomes

(m+ 1)x −mx = (2m+ 1)z, z = y − x ≥ 1 (5)

Let assume that z = 1, in this case the equation (5) is equivalent to

(m+ 1)x −mx = (2m+ 1),

for x ≥ 3, we have

2m+ 1 = (m+ 1)x −mx ≥ (m+ 1)3 −m3 = 3m2 + 3m+ 1

and this is impossible since m ≥ 1. Then we get x = 1 or x = 2. For x = 1, we
get z = 0 which is impossible. So x = 2 and y = 3. Therefore we obtain the
second solution of (1). Now we assume that z > 1, we rewrite the equation
(5) as

(2m+ 1)z = (m+ 1)x −mx = Ux(m+ 1,m).

Clearly m + 1 and m are relatively prime . Since m > 1, from (5), we see
that the sequence Ux has no primitive divisor since x ≥ 1. From Lemma 2.3,
we have two possibilities: either m+ 1 = 2, which is impossible since m > 1,
or x = 2 and 2m + 1 = 2k for some positive integer k. But if x = 2, we get
z = 1, which is impossible since z > 1.

Case 2: n is odd.
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Assuming now, that n is odd, let n = 2m− 1, with m ≥ 2. Equation (1)
becomes

(m(2m+ 1))x − (m(2m− 1))x = (2m)y, (6)

and we distinguish as always three subcases :
- If x = y, then equation (6) is equivalent to

(2m+ 1)x − (2m− 1)x = 2y, (7)

Using Lemma 2.2, equation (7) has as first solution x = y = 1. For the
additional solutions, we have (x, y) = (2, k+1) when a = 2m− 1 = 2k−1 − 1,
so m = 2k−2 for some integer k ≥ 3. In this case, we must have 2 = k + 1
because x = y, so we get k = 1, which is impossible since k ≥ 3. The second
possibility is absurde. It follows that the equation (7) does not have a solution
with x ≥ 2.

- If x > y, equation (6) is equivalent to

mx−y((2m+ 1)x − (2m− 1)x) = 2y, .

it is easy to see that the case when y = 1 leads us to the first solution of (1).
Then we take y ≥ 2. Using the factorisation method, since 2 is prime then,
we get

mx−y = 2s,

and
(2m+ 1)x − (2m− 1)x = 2t, (8)

for some positive integers s > 0, t > 0 such that s + t = y. Similary as in
case of equation (6), the equation (8) has a solution in positive integers only
if x = t = 1. Contradiction since y ≥ 2, so (8) does not have solutions.

- If x < y, equation (6) becomes

(2m+ 1)x − (2m− 1)x = 2ymy−x (9)

Abviously, x = 1 implies y = 1. Then we take y > x ≥ 2, consider the
equation (9) modulo 4, we get

1− (−1)x ≡ (0 mod 4)

it follows that x is even, let put x = 2X, with X ≥ 1, equation (9) is
equivalent to

(2m+ 1)2X − (2m− 1)2X = 2ymy−2X (10)

we factor the above expression to obtain

((2m+ 1)X + (2m− 1)X)((2m+ 1)X − (2m− 1)X) = 2ymy−2X (11)
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From equation (11) , we introduce two even positive integers P and Q as
follows:

P ·Q = 2ymy−2X ,

where
P = (2m+ 1)X + (2m− 1)X , (12)

and
Q = (2m+ 1)X − (2m− 1)X . (13)

We note that
P ≡ 0, 2 (mod 4)

and
Q ≡ 0, 2 (mod 4)

By expressions (12) and (13), we see that pgcd(P,Q) = 2 and P + Q ≡ 0, 2
(mod 4), so P/2 and Q/2 are integers of different parities, we distinguish two
cases :

1. m is odd: in this case ,we have pgcd(Q/2,m) = 1. Since

2y−2 ·my−2X = (P/2)(Q/2),

and Q/2 is coprime to m, it follows that only Q/2 = 1 or Q/2 = 2y−2 are
possible, and we have

(2m+ 1)X − (2m− 1)X = 2,

it is follows that X = 1, so x = 2, substuting this value in (11), we get

4m = 2ymy−2,

but m is odd, so my−2 = 1 which implies that y = 2. Contradiction since
x > y. The second possibility give

(2m+ 1)X − (2m− 1)X = 2y−1.

However, we have already shown that the above equation does not have a
solutions in positive integers only if X = 1 and y − 1 = 1, it follows that
x = y = 2. Contradiction.

2. m is even: We will prove this case in two steps :
a. y − x ≥ 2. From the equation (10) one can see that

1 + 2mX + (−1)X − 2mX ≡ 0 (mod 4m2),

it follows that
1 + (−1)X ≡ 0 (mod 4m2). (14)
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Suppose that X is even, we get from (14), that

2 ≡ 0 (mod 4m2),

contradiction sicnce m ≥ 2. So, X must be odd, it follows that

Q/2 ≡ 0 (mod 4m2),

only the case when Q = 2 is possible. Hence, one has

(2m+ 1)X − (2m− 1)X = 2,

and
(2m+ 1)X − (2m− 1)X = 2y−1my−2X .

from the first equation, we get X = 1, so x = 2, and

4m = 2y−1my−2,

which implies that y = 3. Therefore we obtain the second solution of our
equation (1).

b. Now , we consider the equation (9) for y − x = 1, then we get

(2m+ 1)x − (2m− 1)x = 2ym,

by the same argument, one can see that

Q/2 ≡ 1( mod 2m),

only the case when Q = 2 is possible . Hence, we can deduce that

(2m+ 1)X − (2m− 1)X = 2,

and
(2m+ 1)X − (2m− 1)X = 2y−1m.

but the first equation gives us X = 1, so x = 2, it follows that y = 3. This
completes the proof of our main theorem.
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Wykładnicze równanie diofantyczne na liczbach trójkątnych.
Abdelkader HAMTAT

Streszczenie Liczby trójkątne mają tę właściwość, że różnica dwóch kolejnych wy-
razów ciągu liczb trójkątnych jest równa indeksowi pierwszego. Mają też tę wła-
ściwość, że różnica kwadratów kolejnych liczb jest równa trzeciej potędze indeksu
pierwszej liczby. Celem pracy jest zbadanie analogicznego difantycznego równania
wykładniczego. Rozważmy równanie: różnica x-tych potęg ciągu liczb trójkątnych
jest równa potędze y indeksu pierwszej, dla pewnych dodatnich liczb całkowitych x,
y. Pokazujemy, że powyższe równanie ma tylko rozwiązania (x, y) = (1, 1) i (2, 3).
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