PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetic properties of Co-Fe nanowires electrodeposited in pores of alumina membrane

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Własności magnetyczne nanodrutów Co-Fe otrzymanych w procesie elektroosadzania w porach membrany tlenku glinu
Języki publikacji
EN
Abstrakty
EN
The nanowires of Co66-Fe34 alloy were obtained in the process of the electrodeposition in the pores of alumina membrane. With the use of the X-ray diffraction analysis the structure of cobalt-iron alloy wires was determined. The wires have the regular Body Centred Cubic structure (BCC). The influence of membrane parameters, an external magnetic field, and the annealing temperature on the magnetic properties of alloy wires was investigated. The obtained nanowires show a high shape anisotropy in the direction perpendicular to the membrane surface of anodic alumina. It was found that the highest influence on the magnetic properties of the wires has their geometry (height, diameter, and the distance between them). The use of an external magnetic field directed perpendicular to the sample surface during the electrodeposition process and additional thermal treatment (annealing) causes a slight increase of the coercive field, remanence, and volume energy density.
PL
Nanodruty stopu Co66-Fe34 uzyskano w procesie elektroosadzania w porach membrany tlenku glinu. Przy pomocy dyfrakcyjnej analizy rentgenowskiej określono strukturę drutów stopu kobalt -żelazo. Druty wykazują strukturę regularną przestrzennie centrowaną (RPC) (ang. BCC). Zbadano wpływ parametrów membrany, zewnętrznego pola magnetycznego oraz temperatury wyżarzania na własności magnetyczne drutów stopowych. Uzyskane nanodruty wykazują wysoką anizotropię kształtu w kierunku prostopadłym do powierzchni membrany anodowego tlenku glinu. Stwierdzono, że największy wpływ na własności magnetyczne ma geometria drutów (wysokość, średnica oraz odległości między nimi). Zastosowanie zewnetrznego pola magnetycznego w kierunku prostopadłym do powierzchni próbki podczas procesu elektroosadzania oraz dodatkowej obróbki termicznej (wyzarzania) powoduje niewielki wzrost pola koercji, remanencji oraz gęstości objętościowej energii.
Twórcy
autor
  • AGH, Univesity of Science and Technology, Faculty of Non–Ferrous Metals, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH, Univesity of Science and Technology, Faculty of Non–Ferrous Metals, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH Univesity of Science and Technology, Faculty of Computer Science, Electronics and Telecomunications, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] D. J. Sellmyer, H. Zeng, M. Yan, S. Sun, Y. Liu, Handbook of Advanced Magnetic Materials. IV: Properties and Application, 2006.
  • [2] D. Sellmyer, M. Zheng, R. Skomskli, Magnetism of Fe, Co and Ni nanowires in self- assembled arrays, Journal of Physics: Condensed Matter 13, R433 (2001).
  • [3] M. Hernández-Vélez, Nanowires and 1D arrays fabrication: An overview, Thin Solid Films 495, 51 (2006).
  • [4] P. D. Mc Gary, L. Tan, J. Zou, B. J. H. Stadler, Magnetic nanowires for acoustic sensors, Journal of Applied Physics 99, 08B310 (2006).
  • [5] M. Yun, N. V. Myung, R. P. Vasquez, J. Wang, H. Monbouquette, Nanowire growth for sensor arrays, Proceedings of the SPIE 5220, 37 (2003).
  • [6] Y. Cui, C. M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science 291, 85, 1 (2001).
  • [7] A. Sugawara, D. Streblechenko, M. Mc - Cartney, M.R. Scheinfein, Magnetic coupling in self-organized narrow-spaced Fe nanowire arrays, IEEE Transactions on Magnetics 34, 1081 (1998).
  • [8] D. Routkevitch, A. A. Tager, J. Haruyama, Diyaa Almawlawi, M. Moskovits, J.M. Xu, Nonlithographic nano-wire arrays: fabrication, physics and device applications, IEEE Transaction on Magnetism 43, 1646 (1996).
  • [9] J. Wang, X. Zhou, Q. Liu, D. Xue, F. S. Li, B. Li, Magnetic texture in iron nanowire arrays, Nanotechnology 15, 485 (2004).
  • [10] J. A. Koza, S. Mühlenhoff, M. Uhlemann, K. Eckert, A. Gebert, L. Schultz, Desorption of hydrogen from an electrode surface under influence of an external magnetic field - In-situ microscopic observations, Electrochemistry Communications 11, 425 (2009).
  • [11] A. Krause, M. Uhlemann, A. Gebert, L. Schultz, The effect of magnetic fields on the e-lectrodeposition of Co and Cu, Electrochimica Acta 49, 4127 (2004).
  • [12] H. Matsushima, Y. Fukunaka, H. Yasuda, S. Kikuchi, Phenomenological discussion of Fe and Co film electrodeposited in a magnetic field, ISIJ International 45, 1001 (2005).
  • [13] I. Dobosz, Elektrochemiczne metody otrzymywania kompozytów tlenek aluminium - metal (stop) o własnościach magnetycznych. PhD thesis, AGH, Kraków 2011.
  • [14] A. Ispas, H. Matsushima, W. Plieth, A. Bund, Influence of a magnetic field on the ele-ctrodeposition of nickel - iron alloys, Electrochimica Acta 52, 2785 (2007).
  • [15] H. Matsushima, A. Ispas, A. Bund, B. Bozzim, Magnetic field effects on the initial sta- ges of electrodeposition processes, Journal Electroanalytical Chemistry 615, 191 (2008).
  • [16] A. Ispas, A. Bund, Influence of a magnetic field on the electrodeposition of nickel and nickel-iron alloys, in The 15th Riga and 6th PAMIR Conference on Fundamental and Applied MHD, 135-138 (2011).
  • [17] M. Ebadi, W. J. Basirun, Y. Alias, Influence of magnetic field on the electrodeposition of Ni-Co alloy, Journal of Chemical Society 122, 279 (2010).
  • [18] P. Fricoteaux, C. Rousse, Influence of substrate, pH and magnetic field onto compo- sition and current efficiency of electrodeposited Ni-Fe alloys, Journal of Electroana-lytical Chemistry 612, 9 (2008).
  • [19] A. Ispas, H. Matsushima, A. Bund, B. Bozzini, A study of external magnetic-field effects on nickel-iron alloy electrodeposition, based on linear and non-linear differential AC electrochemical response measurements, Journal of Electroanalytical Chemistry 651, 197 (2011).
  • [20] A. Ispas, H. Matsushima, A. Bund, B. Bozzini, Nucleation and growth of thin nickel layers under the influence of a magnetic field, Journal of Electroanalytical Chemistry 626, 174 (2009).
  • [21] J. Sánchez-Barriga, M. Lucas, G. Rivero, P. Marin, A. Hernando, Magnetoelectrolysis of Co nanowire arrays grown in a track-etched polycarbonate membrane, Journal of Magnetism and Magnetic Materials 312, 99 (2007).
  • [22] H. R. Khan, K. Petrikowski, Synthesis and properties of the arrays of magnetic nano- wires of Co and CoFe, Materials Science and Engineering C 19, 345 (2002).
  • [23] W. Gumowska, I. Dobosz, M. Uhlemann, J. A. Koza, Al2O3 - Co and Al2O3 - Fe composites obtained by the electrochemical method, Archives of Metallurgy and Materials 54, 1119 (2009).
  • [24] I. Dobosz, W. Gumowska, M. Uhlemann, J. A. Koza, Al2O3 -Co and Al2O3 -Fe composites obtained by the electrochemical method.Part II. Magnetic properties of Co and Fe nano-wires, Archives of Metallurgy and Materials 55, 684 (2010).
  • [25] A. Kumar, S. Fähler, H. Schlörb, K. Leistner, L. Schultz, Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates, Physical Reviev B 73, 064421 (2006).
  • [26] T. G. Sorop, K. Nielsch, P. Göring, M. Kröll, W. Blau, R. B. Wehrspohn, U. Gösele, L. J. D. Jongh, Study of the magnetic hysteresis in arrays of ferromagnetic Fe nanowires as a function of the template filling fraction, Journal of Magnetism and Magnetic Materials 272 -276, 1656 (2004).
  • [27] P. S. Fodor, G. M. Tsoi, L. E. Wenger, Fabrication and characterization of CoxFex alloy nanowires, Journal of Applied Physics 91, 8186 (2002).
  • [28] A. Jagminas, K. Mažeika, J. Reklaitis, D. Baltrūnas, V. Pekstas, Annealing effects on the transformations of Fe nanowires encapsulated in the alumina template pores, Materials Chemical Physics 115, 217 (2009).
  • [29] K. Mažeika, J. Reklaitis, Arunas Jagminas, D. Baltrūna s, Studies of oxidation of iron nanowires encased in porous aluminium oxide template, Hyperfine Interact 189, 137 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-899e17f9-0a62-4916-8bb5-ead26bab1db0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.