PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Study on the Synthesis of Lithium Carbonate (Li2CO3) from Waste Acidic Sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the synthesis of lithium carbonate (Li2 CO3 ) powder was conducted by a carbonation process using carbon dioxide gas (CO2 ) from waste acidic sludge based on sulfuric acid (H2 SO4 ) containing around 2 wt.% lithium content. Lithium sulfate (Li2 SO4 ) powder as a raw material was reacted with CO2 gas using a thermogravimetric apparatus to measure carbonation conditions such as temperature, time and CO2 content. It was noted that carbonation occurred at a temperature range of 800°C to 900°C within 2 hours. To prevent further oxidation during carbonation, calcium sulfate (CaO4 S) was first introduced to mixing gases with CO2 and Ar and then led to meet in the chamber. The lithium carbonate obtained was examined by inductively coupled plasma–mass spectroscopy (ICP-MS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) and it was found that of lithium carbonate with a purity above 99% was recovered.
Twórcy
  • Pukyong National University, Department of Metallurgical Engineering, Busan, 48513, Korea
autor
  • Pukyong National University, Department of Metallurgical Engineering, Busan, 48513, Korea
Bibliografia
  • [1] Yanhcjeng Lu, Yang Liu and etc., Ind. Eng. Chem. Res. 53, 11015-11020 (2014).
  • [2] J. M. Park, J. W. Jeon, M. G. Lee, J. Korean. Sos. Mar. Environ. 5, 2524-2527 (2014).
  • [3] Shiqiang Wang, Xunian Han and etc., J. Chem. Eng. Data. 61, 1155-1161 (2016).
  • [4] Yujing Bi, Tao Wang and etc., RSC Adv. 6, 19233-19237 (2016).
  • [5] Na Tian, Chunxiu Hua and etc., J. Mater. Chem. A. 3, 14173-14177 (2015).
  • [6] Yu Qiao, Jin Yi and etc., Energy. Environ. Sci. 11, 1211-1217 (2018).
  • [7] Colin Dessemnod, Francis Lajoie-Leroux and etc., Metals. 9, 334 (2019).
  • [8] A. Suharyanto, L. H. Lalasari and etc., Mater. Sci. Eng. 541, 012044 (2019).
  • [9] Hui Guo, Ge Kuang and etc., Metals. 205 (7), 1-16 (2017).
  • [10] V. I. Samoilov, N. A. Kulenova, Theor. Found. Chem. Eng. 42 (5), 714-717 (2008).
  • [11] P. G. Aguilar, T. A. Graber, Ind. Eng. Chem. Res. 57, 4815-4823 (2018).
  • [12] J. Jandova, P. Dvorak and etc., J. Ceram. Silik. 56 (1), 50-54 (2012).
  • [13] L. T. Peiro, G. V. Mendez and etc., JOM. 65 (8), 986-996 (2013).
  • [14] Wei Sheng Chen, Hsing Jung Ho, Metals. 321 (8), 1-16 (2018).
  • [15] Wei Cai, Ruosong Chen and etc., Crystals. 8 (19), 1-8 (2018).
  • [16] N. Ding, X. W. Ge, C. H. Chen. Mater. Res. Bull. 40, 1451-1459 (2005).
  • [17] M. K. Jeong, C. S. Hwang, C. S. Choi, Clean. Tech. 12 (2), 101-106 (2006).
  • [18] J. Khanderi, J. J. Schneider, Eur. J. Inorg. Chem. 29, 4591-4594 (2010).
  • [19] J. H. Moon, J. E. Ahn, and etc., Applied Chemistry 16 (1), 73-79 (2012).
  • [20] S. M. Shin, D. J. Shin, J. P. Wang, Arch. Metall. Mater. 64, 2, 481-485 (2019).
  • [21] H. J. Ahn, J. W. Ahn and etc., J. Korean Inst. Resour. Recyc. 23, 21-27 (2014).
  • [22] J. W. Ahn, H. J. Ahn, S. H. Son and etc., J. Korean Inst. Resour. Recycl. 21, 5, 58-64 (2014).
  • [23] J. J. Lee, J. D. Chung, J. Korean Inst. Resour. Recyc. 19, 51-60 (2010).
Uwagi
EN
1. This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1F1A1049405).
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89997615-c11b-4859-bf63-3d38bd526e03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.