PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial Analysis of Coastal Vulnerability Index to Sea Level Rise in Biak Numfor Regency (Indonesia)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Assessing the vulnerability of coastal areas is important in evaluating impact of sea level rise due to global climate change. This study aimed to spatially analyze and map the vulnerability level of the Biak Numfor Regency’s coastal area on Biak Island to the threat of sea level rise. The study area is limited to 500 m from the coastline and is divided into 383 grid cells. The Coastal Vulnerability Index (CVI) method was used to map the level of vulnerability of coastal areas based on four coastal geological variables (coastal elevation, coastal slope, geomorphology, and shoreline change) and three ocean physical process variables (tidal range, average significant wave height, and relative sea level rise). The results showed that the coastal areas of Biak Numfor Regency, belonging to the low, medium and high-risk vulnerability categories, were 77,685.63 km (32.18%), 159,084.38 km (65.74%), and 5,024.96 km (2.08%), respectively. The variables that contribute significantly to the level of vulnerability are coastal elevation, coastal slope, coastal geomorphology, and shoreline changes due to abrasion compared to tidal range, significant wave heights, and sea level rise rates. Vulnerability studies of other variables that can contribute to the vulnerability of coastal areas are needed, such as socio-economic variables and the impact of human activities on changes in the coastal environment, to obtain a comprehensive CVI value in supporting coastal mitigation planning efforts against sea level rise disasters so that they are more focused.
Rocznik
Strony
113--125
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Department of Marine Science and Fisheries, Cenderawasih University, Kamp Wolker Street, Jayapura City 99351, Papua, Indonesia
  • Department of Marine Science and Fisheries, Cenderawasih University, Kamp Wolker Street, Jayapura City 99351, Papua, Indonesia
  • Department of Biology, Cenderawasih University, Kamp Wolker Street, Jayapura City 99351, Papua, Indonesia
  • Center for Environmental Studies, Cenderawasih University, Kamp Wolker Street, Jayapura City 99351, Papua, Indonesia
autor
  • Department of Marine Science and Fisheries, Cenderawasih University, Kamp Wolker Street, Jayapura City 99351, Papua, Indonesia
  • Center for Environmental Studies, Cenderawasih University, Kamp Wolker Street, Jayapura City 99351, Papua, Indonesia
Bibliografia
  • 1. Abuodha P.A.O., Woodroffe C.D. 2010. Assessing vulnerability to sea-level rise using a coastal sensitivity index: a case study from southeast Australia. Journal of Coastal Conservation, 14, 189–205.
  • 2. Athanasiou P., van Dongeren A., Giardino A., Vousdoukas M., Gaytan-Aguilar S., Ranasinghe, R. 2019. Global distribution of nearshore slopes with implications for coastal retreat. Earth System Science Data, 11, 1515–1529.
  • 3. Badan Nasional Penanggulangan Bencana. 2012. Peraturan Kepala Badan Nasional Penanggulangan Bencana Nomor 02 Tahun 2012 tentang pedoman umum pengkajian risiko bencana. Badan Nasional Penanggulangan Bencana, Jakarja. (in Indonesian)
  • 4. Badan Pusat Statistik Kabupaten Biak Numfor. 2021. Kabupaten Biak Numfor dalam angka 2021. Badan Pusat Statistik Kabupaten Biak Numfor, Biak Numfor. (in Indonesian)
  • 5. Bunting P., Rosenqvist A., Hilarides L., Lucas R.M., Thomas T., Tadono T., Worthington TA., Spalding M., Murray N.J., Rebelo L-M. 2022. Global mangrove extent change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sensing.
  • 6. Douglas B.C. 2001. Sea level change in the era of the recording tide gauge. In: BC. Douglas, MS. Kearney, and SP. Leatherman (eds.), Sea Level Rise. Academic Press, San Diego.
  • 7. El-Hattab M.M. 2015. Improving coastal vulnerability index of the Nile Delta Coastal Zone, Egypt. Journal of Earth Science & Climatic Change, 6(8), 293.
  • 8. Duriyapong F., Nakhapakorn K. 2011. Coastal vulnerability assessment: a case study of Samut Sakhon coastal zone. Songklanakarin Journal of Science and Technology 33(4), 469–476.
  • 9. Fenoglio-Marc L., Schöne T., Illigner J., Becker M., Manurung P., Khafid. 2012. Sea level change and vertical motion from satellite altimetry, tide gauges and GPS in the Indonesian region. Marine Geodesy, 35(SUPPL. 1), 137–150.
  • 10. Gornitz V., Rosenzweig C., Hillel D. 1997. Effects of anthropogenic intervention in the land hydrologic cycle on global sea level rise. Global and Planetary Change, 14(3–4), 147–161.
  • 11. Gornitz V. 1991. Global coastal hazards from future sea level rise. Palaeogeography, Palaeoclimatology, Palaeoecology, 89, 379–398.
  • 12. Gornitz V.M., White T.W. 1992. A coastal hazards data base for the U.S. east coast (Environmental Sciences Division). Environmental Sciences Division, Tennessee.
  • 13. Hamuna B., Kalor J.D., Tablaseray V.E. 2019. The impact of tsunami on mangrove spatial change in eastern coastal of Biak Island, Indonesia. Journal of Ecological Engineering, 20(3), 1–6.
  • 14. Hamuna B., Sari A.N., Alianto A. 2018. Kajian kerentanan wilayah pesisir ditinjau dari geomorfologi dan elevasi pesisir Kota dan Kabupaten Jayapura, Provinsi Papua. Jurnal Wilayah dan Lingkungan, 6(1), 1–14. (in Indonesian)
  • 15. Handoko E.Y., Yuwono Y., Ariani R. 2019. Analisis kenaikan muka air laut Indonesia tahun 1993-2018 menggunakan data altimetri. Geoid, 15(1), 58–64. (in Indonesian with English abstract)
  • 16. Imran Z., Sugiarto S.W., Muhammad A.N. 2020. Coastal vulnerability index aftermath tsunami in Palu Bay, Indonesia. IOP Conf. Series: Earth and Environmental Science, 420, 012014.
  • 17. Intergovernmental Panel on Climate Change. 2007. Climate change 2007: the physical science basis. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, KB. Averyt, M. Tignor, and HL. Miller (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • 18. Intergovernmental Panel on Climate Change. 2013. Climate change 2013: the physical science basis. In: TF. Stocker, D. Qin, G-K. Plattner, M. Tignor, SK.Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and PM. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • 19. Jadidi A. 2013. Using geospatial business intelligence paradigm to design a multidimensional conceptual model for efficient coastal erosion risk assessment. Journal of coastal conservation, 17, 527–543.
  • 20. Jana A.B., Hegde A.V. 2016. GIS Based approach for vulnerability assessment of the Karnataka Coast, India. Advances in Civil Engineering, 2016, 5642523.
  • 21. Kasim F., Siregar V.P. 2012. Coastal vulnerability assessment using integrated-method of CVI-MCA: a case study on the coastline of Indramayu. Forum Geografi, 26(1), 65–76. (in Indonesian with English abstract)
  • 22. Kesatuan Pengelolaan Hutan Lindung Model Biak Numfor. 2014. Rencana pengelolaan hutan jangka panjang KPHL Biak Numfor. Pemerintah Kabupaten Biak Numfor, Kabupaten Biak Numfor. (in Indonesian)
  • 23. Koroglu A., Ranasinghe R., Jiménez J.A., Dastgheib A. 2019. Comparison of coastal vulnerability index applications for Barcelona Province. Ocean and Coastal Management, 178, 104799.
  • 24. Lopez Royo M., Ranasinghe R., Jiménez J.A. 2016. A rapid, low-cost approach to coastal vulnerability assessment at a national level. Journal of Coastal Research, 32(4), 932–945.
  • 25. Marfai M.A., King L. 2008. Potential vulnerability implications of coastal inundation due to sea level rise for the coastal zone of Semarang city, Indonesia. Environmental Geology, 54(6), 1235–1245.
  • 26. Marfai M.A. 2014. Impact of sea level rise to coastal ecology: a case study on the northern part of Java Island, Indonesia. Quaestiones Geographicae, 33(1), 107–114.
  • 27. Mimura N. 1999. Vulnerability of island countries in the south pacific to sea level rise and climate change. Climate Research, 12, 137–143.
  • 28. Murali R.M., Ankita M., Amrita S., Vethamony P. 2013. Coastal vulnerability assessment of Puducherry coast, India, using the analytical hierarchical process. Natural Hazards and Earth System Sciences, 13, 3291–3311.
  • 29. Mutaqin B.W. 2017. Shoreline changes analysis in Kuwaru coastal area, Yogyakarta, Indonesia: an application of the digital shoreline analysis system (DSAS). International Journal of Sustainable Development and Planning, 12(7), 1203–1214.
  • 30. Nageswara Rao K., Subraelu P., Venkateswara Rao T., Hema Malini B., Ratheesh R., Bhattacharya S., Rajawat A.S., Ajai A. 2008. Sea-level rise and coastal vulnerability: an assessment of Andhra Pradesh coast India through remote sensing and GIS. Journal of Coastal Conservation, 12, 195–207.
  • 31. Oloyede M.O., Williams A.B., Ode G.O., Benson N.U. 2022. Coastal vulnerability assessment: a case study of the Nigerian coastline. Sustainability, 14, 2097.
  • 32. Pantusa D., D’Alessandro F., Riefolo L., Principato F., Tomasicchio G.R. 2018. Application of a coastal vulnerability index: a case study along the Apulian Coastline, Italy. Water, 10, 1218.
  • 33. Passeri D.L., Hagen S.C., Medeiros S.C., Bilskie M.V., Alizad K., Wang D. 2015. The dynamic effects of sea level rise on low-gradient coastal landscapes: a review. Earth’s Future, 3, 159–181.
  • 34. Pendleton E.A., Thieler E.R., Williams S.J. 2010. Importance of coastal change variables in determining vulnerability to sea- and lake-level change. Journal of Coastal Research, 261, 176–183.
  • 35. Pendleton E.A., Thieler E.R., Williams S.J. 2005. Coastal Vulnerability Assessment of War in The Pacific National Historical Park (WAPA) to Sea-Level Rise. US Geological Survey, Virginia.
  • 36. Prabowo H., Astjario P. 2012. The management planning of coastal area of Java Island from vulnerability point of view and its implications of possible sea level rise disaster. Jurnal Geologi Kelautan, 10(3), 167–173. (in Indonesian)
  • 37. Rumahorbo B.T., Warpur M., Hamuna B., Tanjung R.H.R. 2022. Analysis of shoreline changes along the coastal area of Biak Island (Biak Numfor Regency, Indonesia) using multitemporal Landsat images. Journal of Degraded and Mining Lands Management, 10(1), 3861–3870.
  • 38. Ružic I., Jovancevic S.D., Benac C., Krvavica N. 2019. Assessment of the coastal vulnerability index in an area of complex geological conditions on the Krk Island, Northeast Adriatic Sea. Geosciences, 9, 219.
  • 39. Shaw J., Taylor R.B., Forbes D.L., Ruz M.-H., Solomon S. 1998. Sensitivity of the coasts of Canada to sea-level rise. Bull. Geol. Surv. Can., 505, 1–79.
  • 40. Susanto K.E., Marfai M.E., Mardiatno D. 2010. Proyeksi kenaikan permukaan laut dan dampaknya terhadap banjir genangan kawasan pesisir. Majalah Geografi Indonesia, 24(2), 101–120. (in Indonesian with English abstract)
  • 41. Susanto K.E., Marfai M.E., Mardiatno D. 2010. Projections of sea rise and its impact on flood in coastal area. Majalah Geografi Indonesia, 24(2), 101–120. (in Indonesian)
  • 42. Thieler E.R., Himmelstoss E.A., Zichichi J.L., Ergul A. 2009. Digital shoreline analysis system (DSAS) version 4.0, An ArcGIS extension for calculating shoreline change. U.S. Geological Survey Open-File Report, 2008-1278.
  • 43. Triana K., Wahyudi A.J. 2020. Sea level rise in Indonesia: the drivers and the combined impacts from land subsidence. ASEAN Journal on Science & Technology for Development, 37(3), 115–121.
  • 44. Wuebbles D.J., Easterling D.R., Hayhoe K., Knutson T., Kopp R.E., Kossin J.P., Wehner M.F. 2017. Our globally changing climate. Climate Science Special Report: Fourth National Climate Assessment. Global Change Research Program, Washington DC.
  • 45. Zikra M., Suntoyo S., Lukijanto L. 2015. Climate change impacts on Indonesian coastal areas. Procedia Earth and Planetary Science, 14, 57–63.
  • 46. Zonkouan B.R.V., Bachri I., Beda A.H.Z., N’Guessan K.A.M. 2022. Monitoring spatial and temporal scales of shoreline changes in Lahou-Kpanda (Southern Ivory Coast) using Landsat data series (TM, ETM+ and OLI). Geomatics and Environmental Engineering, 16(1), 145–158.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89936475-c2da-4c5e-b7d7-0bc292a6636b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.