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A new approach to the realization problem for fractional
discrete-time linear systems
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Abstract. A new approach to the realization problem for fractional discrete-time linear systems is proposed. A procedure for computation
of fractional realizations of given transfer matrices is presented and illustrated by numerical examples.
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1. Introduction

Determination of the state space equations for given transfer
matrices is a classical problem, called the realization problem,
which has been addressed in many papers and books [1-8].
An overview of the positive realization problem is given in [1,
2, 6, 9]. The realization problem for positive continuous-time
and discrete-time linear system has been considered in [6, 7,
10-22] and for linear systems with delays in [6, 10, 15, 21—
24]. The realization problem for fractional linear systems has
been analyzed in [6, 7, 25-30] for positive 2D hybrid linear
systems in [24, 31, 32] and for fractional systems with delays
in [33, 34]. A new modified state variable diagram method for
determination of positive realizations with reduced number of
delays for given proper transfer matrices has been proposed
in [35].

In this paper a new approach to the realization problem for
fractional discrete-time linear systems will be proposed. The
paper is organized as follows. Some preliminaries and prob-
lem formulation are given in Sec. 2. In Sec. 3 the solution
to the realization problem for fractional discrete-time linear
systems is presented and illustrated by numerical examples.
Concluding remarks are given in Sec. 4.

The following notation will be used: #& — the set of real
numbers, R > — the set of n x m real matrices, "™ (w) -
the set of n X m rational matrices in w with real coeflicients,
Z — the set of nonnegative integers, I, — the n x n identity
matrix.

2. Preliminaries and problem formulation

Consider the fractional discrete-time linear system

A%x; = Az + Buy, ieZy={0,1,...}, (1a)
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where
i
Aal‘i = Z CjTi—j,
=0
(lc)

Jj=0
ji=1,2,..

1 for
= (71)] a(a—l)..j.!(afjJrl) for )
x; € R, u; € R, y; € NP are the state, input and output
vectors and A € R™"*", B € R™"*"™, C € RP*", D € RP*™,

Using the Z-transformation to (1a) and (1b) for zero initial
conditions we obtain [6]

Z[AY;) =wX(z) = AX(2) + BU(z),

2
ieZ.=1{0,1,.) (22)
Y(z) =CX(z) + DU(2), (2b)
where
ZIAYz]) = (1 — 27X (2) = w(2) X (2) = wX(2),
w=w(z)=(1-2z1H*= ZCZZ ‘
. 1=0 (2C)
X(2) = Z[z;] = szz Y
i=0
U(z) = Zu],  Y(z) = Zlyi.
From (2) we have the transfer matrix
T(w) = C[Lbw—A"'B+ D. 3)
The transfer matrix 7'(z) is called proper if and only if
lim T(w) = D € RP*™ “)
w—00
and it is called strictly proper if and only if D = 0.
From (3) we have
lim T(w) =D 5)

w— 00

since lim [I,w — A]~! = 0.
w—00
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Definition 1. The matrices A, B, C, D are called a fractional
realization of a given transfer matrix 7'(w) if they satisfy the
equality (3).

A fractional realization A, B, C, D is called minimal if
the dimension of the matrix A is minimal among all realiza-
tions of T'(w).

The fractional realization problem can be stated as fol-
lows. Given a proper transfer matrix 7'(w) € RP*™(w) find
a fractional realization A, B, C, Dof the matrix T'(w).

3. Problem solution

3.1. Single-input single-output systems. First the essence

From (9) and (10) we have

E=U—(ap 1w '+ .. +aw'™ +aw ™E, (lla)

Y = (bpo1w '+ ...+ biw' ™" 4 bow ")E. (11b)
From (11) follows the block diagram shown in Fig. 1.

Assuming as the state variables x1;, x2,..., Tpn,; the

outputs of the delay elements we may write the equations

« J—
A 1,4 = X245

« —
A%y = T34,

of the proposed method is presented for single-input single- (12a)
output (SISO) fractional discrete-time linear systems with the ALy 1 =Tni,
transfer function ACT, i = —aoT14 — Q1T — oo — Ay 1T i + Ui
bpw™ + bpy_qw™ "t 4. 4+ b b 7 7 7 7
T(w) = 2ot ST TR (0 g
w4+ Q1w + ...+ arw+ ag _ _ _
Using (4) for (6) we obtain Yi =box1; +b1x2; + ...+ bp_1Tn . (12b)
D= wlgréo T(w) = by (7 The Eq. (12) can be written in the form
and B 1 o A%; = Az; + Bu;, (13a)
bp—1w™ ™ + ...+ byw + by
TSP(w) - T(w> o ™ n—1 ’ _
W + QW 4+ ...+ aiw+ag y; = Cua;, (13b)
(8a)
where where
Bk = by — axby, k=0,1,....,n—1. (8b) xi:[ 1, Toi T ]T7 ieZy,
Therefore, the realization problem has been reduced to find- 0 1 0 0
ing matrices A € R"*", B € R"*™, C € RP*"™ for given
strictly proper transfer function (8a). 0 0 1 0
Multiplying the numerator and the denominator of (8a) by A= : ,
w~" we obtain 0 0 0 1
Y by—1w™t + . bpw! T 4w S B (14)
Top(w) = = = — — —, ap ai az Ap—1
U 1+an,1w 1+...+a1w1 "4+ agw—"
9) 0
where Y and U are the Z-transforms of y; and u;, respectively. . o B
Define B = : s C = [ b b1 bn_1 ]
U 0
E= . 10
1+ ap_qw 4+ ... +aw=" 4+ aow=" (10) 1
> anl
U E
w > » ! > e !
U — Xn,i Xn-1,i X1,
ady.] |4
< ay-2 [4—
ap |«

Fig. 1. State diagram for transfer function (9)

10
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Remark 1. If we choose the state variables so that x;, =
Tp—k41 for k = 1,...,n then the realization of (8) has the
form

—Up-1 —0ap-2 —ap —ap
1 0 0 0
Al - )
0 1 0 0
0 0 10 (15)
1
0 _ _ _
Bl = . ) Cl = [ bn—l bn—2 bO ]
0

Remark 2. Note that the transposition (denoted by T') of the
transfer function does change it, i.e. [Ts,(w)]T = Typ(w) =
[ClInw— A]71B)T = BT[I,w — AT]71CT and the matrices

o o0 --- 0 —ap
0o ... 0 —ai
Ay = AT =10 1 0 —as ,
00 -+ 1 —apn
_ (16)
b()
by
By = CT = )
l;nfl
Co=B"=[0 --- 0 1]
and
—Gp1 1 0 -+ 0
—0p—2 0 0
Az = A = Do )
—al 0 0
—ap 0 0 0
_ (17
bn—l
l;n72
By =Cf = :
EO
C3=BT=[1 0 -+ 0]

are also the realizations of the transfer function (8).
Example 1. Find the fractional realization of the transfer func-
tion

2w? + 11w + 10

T = 1
(w) w? + 3w+ 4 (18)
Using (7) we obtain

D= lim T(w)=2 (19)

w—00
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and
5w + 2 5wt 4+ 2w2
T, =T - D= = .
p(w) (w) w2 +3w+4  1+3w ! +4w2
(20)
In this case we have
U
= 21
1+ 3w 1 +4w2 @b
and
E=U-Buw'+4w HE, (22a)
Y = (5w 4 20w ?)E. (22b)

The block diagram corresponding to (22) is shown in Fig. 2.

1,

4

Fig. 2. State diagram for transfer function (20)

For the choice of the state variables shown in Fig. 2 we
obtain the equations

«
A%y = 204,

23a
A%y ; = —4dx1; — 3w, + u, (232
Yi = 2x1,4 + OT2 (23b)
and the realization
0 1 0
A= , B= , C=[2 5] (24
-4 -3 1

3.2. Multi-input multi-output systems. Consider a strictly

proper transfer matrix 7, (w) € RP*™(w). Let

Dz(w) = ’Ll}di — (aiydi,lwdﬁl —+ ...+ ai,lw -+ aiy()>,
. (25)
t=1,....m

be the least common denominator of all entries of the i-th
column of Ty (w).
Using (25) we may write T, (w) in the form

Nll(w) Nlm(w)
D (w) Dy, (w)
Tsp(w) = = N(w)D™ ! (w),
Np1(w) Npm (w)
D1 (w) Dm(w)
(26a)
where
Ny (w) Nim(w)
N(w) = : : 265)
Np1(w) Npm (w)
D(w) = diag] Di(w) - Dy(w) |
11
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From (25) it follows that

D(w) = diag[ w win | — A, W, (27a)
where .
A, = blockdiag| ay m s
(27b)
ai = aio @idi—1 s
W = blockdiag| W, W s
(27¢)
Wi=[1 w - wihl]
Note that if
N;j(w) = cfj?_lwdfl + ot cw+ ), (28a)
then
N(w) =CW, (28b)
where
A oetr oot e A el e Tt
C: . . . .
T Y S
(28¢)
We shall show that the matrices
A = blockdiag] A4; An |,
0 1 0o .- 0
0 0 1 - 0
Ai = )
0 0 0 1 (29)
a0 Qi1 Q32 Qi d;—1
1=1,...,m,
B = blockdiag[ b, bm |,
b= [0 0 1)7 epdi | i=1,...,m
and (28c¢) are the desired realization of (26).
Using (27) and (28) it is easy to verify that
1
w
i
and
BD(w) = [I,w — A]W. (31

Premultiplication of (31) by C[I,,w — A]~! and postmultipli-
cation by D~ (w) yields
ClIyw— A]"'B =CWD (w)
= N(w)D ™ (w) = Tsp(w).

Therefore, we have the following procedure for finding a frac-
tional realization of a given proper transfer matrix 7' (w).

(32)

Procedure 1.

Step 1. Using (4) find the matrix D and the strictly proper
transfer matrix T, (w).

12

Step 2. Find the least common denominators Di(w), ..
D,,,(w) and write T, (w) in the form (26).

Step 3. Knowing D(w) find the indices d,...,d,, and the
matrices W and A,,,.

Step 4. Knowing N (w) find the matrix C' defined by (28c¢).

Step 5. Using (29) find the matrices A and B.

(3]

Remark 3. Similar results can be obtained for the least com-
mon denominator of all entries of the j-th row of Ty, (w).

Example 2. Find the fractional realization of the transfer ma-

trix
2w+ 1 w+3
w w+1
T(w) = (33)
3w—+8 2w+5
w+ 2 w + 2

Using Procedure 1 and (33) we obtain the following:
Step 1. Using (4) and (33) we obtain

D= lim T(w)
2w+ 1 w+ 3
) w w41 2 1 (34)
= lim =
w—oo | Jw+8 2w+5H 3 2
w+ 2 w + 2
and
1 2
w w+1
Top(w)=Tw)-D=| " G9)
w42 w+2

Step 2. From (35) we have Dq(w) = w(w + 2), Da(w) =
(w+ 1)(w + 2) and

Tsp(w) = N(w)D™ ! (w), (36a)
where
N(w) = w+2 2w+ 2)
2w w4+ 1
(36b)
D(w) = w(w + 2) 0 .
0 (w+1)(w+ 2)
Step 3. From (36b) we have d; = dy = 2 and
1 0
W w 0 ’ A, — 0 -2 0 0 37)
0 1 0o 0 -2 -3
0 w
since
2
D(w) w(w + 2) 0 w0
0 (w+1)(w+ 2) 0 w?

f ~ o o

(38)
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Step 4. Using (36b) we obtain

2 2 4
N(w) _ w + w +
2w w+1
10 (392)
2 1 4 2 0
_ v = OW
0 2 1 1 0 1
0 w
and
2 1 4 2
C = (39b)
0 2 1 1
Step 5. Using (29) and (37) we obtain
0 1 0 0 0 0
-2 1
A= 0 0 0 , B= 0 (40)
0 O 0 1 0 0
0O 0 -2 -3 0 1

The desired fractional realization of (33) is given by (40),
(39b) and (34).

4. Concluding remarks

A new approach to finding fractional realizations of given
transfer matrices of discrete-time linear systems has been pro-
posed. It has been shown that for any given proper trans-
fer matrix there exist always many fractional realizations. A
procedure for computation a fractional realization of a giv-
en transfer matrix has been proposed. The effectiveness of
the procedure has been demonstrated on numerical examples.
The classical Gilbert method [29] can also be applied to com-
pute the fractional realizations of the given transfer matrices
of discrete-time linear systems.

The presented method can be easily extended to positive
fractional linear discrete-time systems without and with de-
lays.
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