PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Physicochemical characterization of ionically cross-linked hydrogel matrices with incorporated fananserin derivative

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fananserin derivative, such as 1-{6-[4-(2-fluorophenyl)piperazin-1-yl]hexyl}-benzo[cd]indol-2(1H)-one (compound FL-4), represents an interesting biologically active substance that can be incorporated into polymeric carriers. Due to its highly hydrophobic nature and poor solubility in conventional solvents, FL-4 was incorporated into a delivery system to improve its solubility, stability, and bioavailability. Based on preliminary studies and DLS analysis, an optimal concentration of FL-4 (10 mg) was selected, ensuring system stability. This system was incorporated into polymer matrices, resulting in two hydrogel delivery systems: M10-J, containing FL-4, and M10-T-J, which combines a thermosensitive nanocarrier with FL-4, both ionically cross-linked. The systems were evaluated for their physicochemical properties, including swelling abilities, degradation, chemical structure (based on FTIR spectra analysis), morphology (based on SEM images), and substance release profiles. The M10-T-J samples showed a swelling ratio of 0.27 g/g in PBS and 0.35 g/g in water, while M10-J exhibited 0.16 g/g in PBS and 0.2 g/g in water. The pH and conductivity analysis suggested a faster degradation process for M10-T-J hydrogel compared to M10-J. FT-IR analysis confirmed the chemical structure of the materials, revealing significant changes in M10-T-J samples, indicating interactions between FL-4 and CaCl₂ used during cross-linking. SEM and EDS analysis showed a uniform distribution of FL-4 on the matrix surface in both hydrogel variants, with the addition of the thermosensitive nanocarrier not significantly affecting the morphology. The M10-J hydrogel exhibited rapid release of FL-4 within the first 4 h, while M10-T-J showed limited release.
Rocznik
Strony
art. no. 5
Opis fizyczny
Bibliogr. 38 poz., tab., wykr., zdj.
Twórcy
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, 24 Warszawska St., 31-155 Cracow, Poland
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, 24 Warszawska St., 31-155 Cracow, Poland
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, 24 Warszawska St., 31-155 Cracow, Poland
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Chemistry and Technology of Polymers, 24 Warszawska St., 31-155 Cracow, Poland
Bibliografia
  • [1] Y. Zhao, et al.: Cryptococcus neoformans, a global threat to human health. Infect. Dis. Poverty 12(1) (2023), doi: 10.1186/s40249-023-01073-4.
  • [2] K. Nielsen, et al.: Cryptococcus neoformans α strains preferentially disseminate to the central nervous system during coinfection. Infect. Immun. 73(8) (2005) 4922–4933, doi: 10.1128/IAI.73.8.4922-4933.2005.
  • [3] WHO, WHO fungal priority pathogens list to guide research, development and public health action (2022), https://www.who.int/publications/i/item/9789240060241
  • [4] E. Gaviria Morales, et al.: Primary Cutaneous Cryptococcosis due to Cryptococcus neoformans in an Immunocompetent Host Treated with Itraconazole and Drainage: Case Report and Review of the Literature. Case Rep. Dermatol. 13(1) (2021) 89–97, doi: 10.1159/000512289.
  • [5] E.K. Maziarz, J.R. Perfect: Cryptococcosis. Infect. Dis. Clin. North Am. 30(1) (2016) 179–206, doi: 10.1016/j.idc.2015.10.006.
  • [6] M.A. Nowak, et al: Cutaneous cryptococcosis: an underlying immunosuppression? Clinical manifestations, pathogenesis, diagnostic examinations and treatment. Postep. Dermatologii i Alergol. 37(2) (2020) 154–158, doi: 10.5114/ada.2020.94833.
  • [7] P. Zaręba, et al.: Design, synthesis and molecular modelling of new bulky Fananserin derivatives with altered pharmacological profile as potential antidepressants. Bioorganic Med. Chem. 27(15) (2019) 3396–3407, doi: 10.1016/j.bmc.2019.06.028.
  • [8] H.S. Rane, et al.: Candida albicans VMA3 is necessary for V-ATPase assembly and function and contributes to secretion and filamentation. Eukaryot. Cell 12(10) (2013) 1369–1382, doi: 10.1128/EC.00118-13.
  • [9] A. Kai, et al.: Diarrheagenic Escherichia coli. Nippon rinsho. Japanese J. Clin. Med. 68 Suppl. 6, (2010) 203–207.
  • [10] M. Bialik, et al.: Biodegradable synthetic polyesters in the technology of controlled dosage forms of antihypertensive drugs– the overview. Expert Opin. Drug Deliv. 16(9) (2019) 953–967, doi: 10.1080/17425247.2019.1651716.
  • [11] N. Kamaly, et al.: Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 116(4) (2016) 2602–2663, doi: 10.1021/acs.chemrev.5b00346.
  • [12] P. Trucillo: Drug Carriers: Classification, Administration, Release Profiles, and Industrial Approach. Processes 9(470) (2021) 1–18.
  • [13] M. Wrzecionek, et al.: Materiały hydrożelowe i ich zastosowanie w medycynie. In: Wybrane rozwiązania technologiczne w medycynie. Wydawnictwo Naukowe TYGIEL sp. z o.o. (2018) 79–96.
  • [14] Q. Chai, Y. Jiao, X. Yu: Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 3(1) (2017), doi: 10.3390/gels3010006.
  • [15] B. Farasati Far, et al.: Hydrogel Encapsulation Techniques and Its Clinical Applications in Drug Delivery and Regenerative Medicine: A Systematic Review. ACS Omega 9(27) (2024) 29139–29158, doi: 10.1021/acsomega.3c10102.
  • [16] N. Parvin, et al.: Cutting-Edge Hydrogel Technologies in Tissue Engineering and Biosensing: An Updated Review. Materials (Basel). 17(19) (2024), doi: 10.3390/ma17194792.
  • [17] M. Verhulsel, et al.: A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35(6) (2014) 1816–1832, doi: 10.1016/j.biomaterials.2013.11.021.
  • [18] S. Lopes, et al.: Ionic- and photo-crosslinked hydrogels. In: Hydrogels for Tissue Engineering and Regenerative Medicine, Academic Press (2024) 181–198. doi: 10.1016/B978-0-12-823948-3.00036-1.
  • [19] J. Walczak, et al.: Hydrogels based on ionically and covalently crosslinked alginates. Engineering of Biomaterials 132 (2015) 17-23.
  • [20] J.M. Calderón Moreno, et al.: Eco-Friendly Conductive Hydrogels: Towards Green Wearable Electronics. Gels 11(4) (2025) 220, https://doi.org/10.3390/gels11040220.
  • [21] Y. Wang, et al.: Progress in Research on Metal Ion Cross-linking Alginate-Based Gels. Gels 11(1) (2025) 16, doi: 10.3390/gels11010016.
  • [22] K. Bialik-Wąs, et al.: Impact of the Type of Cross-linking Agents on the Properties of Modified Sodium Alginate/Poly(vinyl Alcohol) Hydrogels. Molecules 26(8) (2021) 2381.
  • [23] K. Draget, et al.: Alginates form algae. In: Steinbuchel A.; Rhee S.K.; (eds) Polysaccharides and polyamides in the food industry. Properties, production, and patents. Wiley; Weinheim, 1–30, 2005, http://onlinelibrary.wiley.com/doi/10.1002/3527600035.bpol6008/full
  • [24] A. Hamerska-Dudra: Termoczułe polimery usieciowane – synteza i wybrane właściwości. PhD Thesis, Wrocław University of Science and Technology (2007).
  • [25] X. Li, X. Su: Multifunctional smart hydrogels: Potential in tissue engineering and cancer therapy. J. Mater. Chem. B 6(29) (2018) 4714–4730, doi: 10.1039/c8tb01078a.
  • [26] M. Sponchioni, et al.: Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C 102 (2019), 589–605, doi: 10.1016/j.msec.2019.04.069.
  • [27] Y. Qu, et al.: A biodegradable thermo-responsive hybrid hydrogel: Therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Mater. 7(8) (2015) e207-10, doi: 10.1038/am.2015.83.
  • [28] S. Chatterjee, et al.: Thermoresponsive hydrogels and their biomedical applications: Special insight into their applications in textile based transdermal therapy. Polymers (Basel) 10(5) (2018), doi: 10.3390/polym10050480.
  • [29] M. Ward: Thermoresponsive Polymers for Biomedical Applications. Polymers (Basel) 3 (2011), doi: 10.3390/polym3031215.
  • [30] K. Bialik-Wąs, et al.: Bio-Hybrid Hydrogels Incorporated into a System of Salicylic Acid-pH/Thermosensitive Nanocarriers Intended for Cutaneous Wound-Healing Processes. Pharmaceutics 14(4) (2022), doi: 10.3390/pharmaceutics14040773.
  • [31] S. Chen, et al.: Reaction mechanisms of n-isopropylacrylamide soap-free emulsion polymerization based on two different initiators. J. Macromol. Sci. Part A Pure Appl. Chem. 51(5) (2014) 447–455, doi: 10.1080/10601325.2014.893144.
  • [32] X. Yan, R.A. Gemeinhart: Cisplatin delivery from poly(acrylic acid-co-methyl methacrylate) microparticles. J. Control. Release 106(1–2) (2005) 198–208, doi: 10.1016/j.jconrel.2005.05.005.
  • [33] K. Bialik-Wąs, et al.: Poly(acrylic acid-co-methyl methacrylate)/ metronidazole systems: Synthesis and complexation. Acta Biochim. Pol. 60(4) (2013) 835–838, doi: 10.18388/abp.2013_2068.
  • [34] K. Bialik-Wąs, et al.: Sposób Wprowadzania Hydrofobowych Leczniczych Substancji Czynnych, Tworzących Układu z Termoczułym Nanonośnikiem, do Hydrofilowej Matrycy Opatrunku Hydrożelowego. Zgłoszenie patentowe nr P.439845, 15 grudnia 2021 r.
  • [35] M.G. Sosa-Herrera, et al.: Effect of added calcium chloride on the physicochemical and rheological properties of aqueous mixtures of sodium caseinate/sodium alginate and respective oil-in-water emulsions. Food Hydrocoll. 29(1) (2012) 175–184, doi: 10.1016/j.foodhyd.2012.02.017.
  • [36] K.Y. Lee, D.J. Mooney: Hydrogels for tissue engineering. Chem. Rev. 101(7) (2001) 1869–1879, doi: 10.1021/cr000108x.
  • [37] N.A. Peppas, et al.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50(1) (2000) 27–46, doi: 10.1016/S0939-6411(00)00090-4.
  • [38] J.S. Boateng, et al.: Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 97(8) (2008) 2892–2923, doi: 10.1002/jps.21210.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89917c80-c0c2-4f88-8721-eecd06fd8a82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.