PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role of water content in rate dependence of tensile strength of a fine-grained sandstone

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rocks in nature are commonly in partially saturated conditions and exposed to dynamic loads. In this study, to explore the coupled effects of water content and loading rate, dynamic Brazilian disc experiments were conducted on Yunnan sandstone samples with four levels of water content (from air-dried to water-saturated) under various loading rates (from 100 to 600 GPa/s) using a split Hopkinson pressure bar. The test results show that for each water content, the dynamic tensile strength of sandstone is positively sensitive to loading rate. The rate dependence of tensile strength increases as the rise of water content. The change trends of tensile strength against water content depend on loading rate: as water content rises, the tensile strength displays the manner of “no change followed by fast drop” at loading rates of 10–4 and 100 GPa/s. However, when the loading rate is above 200 GPa/s, the tensile strength increases first and then declines. The turning point occurs at water content between 1.0 and 2.0%. These observations can be interpreted with the competition between water weakening and enhancing effects under different loading conditions.
Rocznik
Strony
art. no. e58, 2022
Opis fizyczny
Bibliogr. 58 poz., fot., rys., wykr.
Twórcy
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410010, Hunan, China
  • Hunan Provincial Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines, Changsha 410010, Hunan, China
  • School of Resources and Safety Engineering, Central South University, Changsha 410010, Hunan, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410010, Hunan, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410010, Hunan, China
  • Hunan Provincial Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines, Changsha 410010, Hunan, China
  • School of Resources and Safety Engineering, Central South University, Changsha 410010, Hunan, China
  • Hunan Provincial Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines, Changsha 410010, Hunan, China
Bibliografia
  • 1. Cai X, Cheng C, Zhou Z, Konietzky H, Song Z, Wang S. Rock mass watering for rock-burst prevention: some thoughts on the mechanisms deduced from laboratory results. Bull Eng Geol Environ. 2021. https://doi.org/10.1007/s10064-021-02467-0.
  • 2. Wong LNY, Maruvanchery V, Liu G. Water effects on rock strength and stiffness degradation. Acta Geotech. 2016;11:713–37. https://doi.org/10.1007/s11440-015-0407-7.
  • 3. Iverson RM. Landslide triggering by rain infiltration. Water Resour Res. 2000;36:1897. https://doi.org/10.1029/2000WR900090.
  • 4. Ma D, Kong S, Li Z, Zhang Q, Wang Z, Zhou Z. Effect of wetting-drying cycle on hydraulic and mechanical properties of cemented paste backfill of the recycled solid wastes. Chemosphere. 2021. https://doi.org/10.1016/j.chemosphere.2021.131163.
  • 5. Chugh YP, Missavage RA. Effects of moisture on strata control in coal mines. Eng Geol. 1981;17:241–55. https://doi.org/10.1016/0013-7952(81)90001-6.
  • 6. Li D, Wong LNY. The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng. 2013. https://doi.org/10.1007/s00603-012-0257-7.
  • 7. Tan L, Ren T, Dou L, Yang X, Qiao M, Peng H. Analytical stress solution and mechanical properties for rock mass containing a hole with complex shape. Theor Appl Fract Mech. 2021;114:103002. https://doi.org/10.1016/j.tafmec.2021.103002.
  • 8. Hashiba K, Fukui K. Effect of water on the deformation and failure of rock in uniaxial tension. Rock Mech Rock Eng. 2015. https://doi.org/10.1007/s00603-014-0674-x.
  • 9. Wong LNY, Jong MC. Water saturation effects on the Brazilian tensile strength of gypsum and assessment of cracking processes using high-speed video. Rock Mech Rock Eng. 2014;47:1103–15. https://doi.org/10.1007/s00603-013-0436-1.
  • 10. Vutukuri VS. The effect of liquids on the tensile strength of limestone. Int J Rock Mech Min Sci Geomech Abstr. 1974;11:27–9. https://doi.org/10.1016/0148-9062(74)92202-5.
  • 11. You M, Chen X, Su C. Brazilian splitting strengths of discs and rings of rocks in dry and saturated conditions. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng. 2011;30:464–72.
  • 12. Erguler ZA, Ulusay R. Water-induced variations in mechanical properties of clay-bearing rocks. Int J Rock Mech Min Sci. 2009;46:355–70. https://doi.org/10.1016/j.ijrmms.2008.07.002.
  • 13. Ojo O, Brook N. The effect of moisture on some mechanical properties of rock. Min Sci Technol. 1990. https://doi.org/10.1016/0167-9031(90)90158-O.
  • 14. Zhao Z, Yang J, Zhang D, Peng H. Effects of wetting and cyclic wetting-drying on tensile strength of sandstone with a low clay mineral content. Rock Mech Rock Eng. 2017;50:485–91. https://doi.org/10.1007/s00603-016-1087-9.
  • 15. Yan Y, Liao Y, Wu J, Shi Y. Tension resistant strength of rock under confining pressure South China. J Seismol. 1991;11:1–12. https://doi.org/10.13512/j.hndz.1991.02.001.
  • 16. Song Z, Konietzky H, Cai X. Modulus degradation of concrete exposed to compressive fatigue loading: Insights from lab testing. Struct Eng Mech. 2021;78:281–96. https://doi.org/10.12989/sem.2021.78.3.281.
  • 17. Cheng R, Zhou Z, Chen W, Hao H. Effects of axial air deck on blast-induced ground vibration. Rock Mech Rock Eng. 2021. https://doi.org/10.1007/s00603-021-02676-9.
  • 18. Song Z, Wang Y, Konietzky H, Cai X. Mechanical behavior of marble exposed to freeze-thaw-fatigue loading. Int J Rock Mech Min Sci. 2021. https://doi.org/10.1016/j.ijrmms.2021.104648.
  • 19. Cai W, Dou L, Si G, Hu Y. Fault-induced coal burst mechanism under mining-induced static and dynamic stresses. Engineering. 2020. https://doi.org/10.1016/j.eng.2020.03.017.
  • 20. Zhang QB, Zhao J. A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng. 2014;47:1411–78. https:// doi. org/ 10. 1007/s00603-013-0463-y.
  • 21. Li X. Rock dynamics: fundamentals and applications. Beijing: Science Press; 2014.
  • 22. Huang S, Xia K, Yan F, Feng X. An experimental study of the rate dependence of tensile strength softening of Longyou sandstone. Rock Mech Rock Eng. 2010. https://doi.org/10.1007/s00603-010-0083-8.
  • 23. Kim E, Changani H. Effect of water saturation and loading rate on the mechanical properties of Red and Buff Sandstones. Int J Rock Mech Min Sci. 2016. https://doi.org/10.1016/j.ijrmms.2016.07.005.
  • 24. Gombert P, Auvray C, Al-Heib M. In-situ and laboratory tests to evaluate the impact of water table fluctuations on stability of underground chalk mines. Procedia Earth Planet Sci. 2013. https://doi.org/10.1016/j.proeps.2013.03.138.
  • 25. Zhou Z, Cai X, Ma D, Cao W, Chen L, Zhou J. Effects of water content on fracture and mechanical behavior of sandstone with a low clay mineral content. Eng Fract Mech. 2018. https://doi.org/10.1016/j.engfracmech.2018.02.028.
  • 26. ASTM International, ASTM D2936-20, Standard Test Method for Direct Tensile Strength of Intact Rock Core Specimens, West Conshohocken, 2020. https://doi.org/10.1520/D2936-20.
  • 27. ASTM International, ASTM D3967-16, Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, West Conshohocken, 2016. https://doi.org/10.1520/D3967-16.
  • 28. Dai F, Xia K, Luo SN. Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids. Rev Sci Instrum. 2008. https://doi.org/10.1063/1.3043420.
  • 29. Li X, Tao M, Wu C, Du K, Wu Q. Spalling strength of rock under different static pre-confining pressures. Int J Impact Eng. 2017. https://doi.org/10.1016/j.ijimpeng.2016.10.001.
  • 30. ISRM. Suggested methods for determining tensile strength of rock materials part 2: suggested method for determining indirect tensile strength by the Brazil test. Int J Rock Mech Min Sci Geomech Abstr. 1978;15:99–103. https://doi.org/10.1016/0148-9062(78)90003-7.
  • 31. Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials.Int J Rock Mech Min Sci. 2012;49:105–12. https://doi.org/10.1016/j.ijrmms.2011.10.004.
  • 32. Zhou Z, Cai X, Cao W, Li X, Xiong C. Influence of water content on mechanical properties of rock in both saturation and drying processes. Rock Mech Rock Eng. 2016;49:3009–25. https://doi.org/10.1007/s00603-016-0987-z.
  • 33. Xing HZ, Wu G, Dehkhoda S, Ranjith PG, Zhang QB. Fracture and mechanical characteristics of CO 2 -saturated sandstone at extreme loading conditions. Int J Rock Mech Min Sci. 2019. https://doi.org/10.1016/j.ijrmms.2019.03.025.
  • 34. Liu Y, Dai F, Pei P. A wing-crack extension model for tensile response of saturated rocks under coupled static-dynamic loading. Int J Rock Mech Min Sci. 2021. https://doi.org/10.1016/j.ijrmms.2021.104893.
  • 35. Ogata Y, Jung W, Kubota S, Wada Y. Effect of the strain rate and water saturation for the dynamic tensile strength of rocks. Mater Sci Forum. 2004;465–466:361–6. https://doi.org/10.4028/www.scientific.net/MSF.465-466.361.
  • 36. Cadoni E, Labibes K, Albertini C, Berra M, Giangrasso M. Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels. Mater Struct. 2001;34:21–6. https://doi.org/10.1007/BF02482196.
  • 37. Rossi P, Van Mier JGM, Toutlemonde F, Le Maou F, Boulay C. Effect of loading rate on the strength of concrete subjected to uniaxial tension. Mater Struct. 1994;27:260–4. https://doi.org/10.1007/BF02473042.
  • 38. Zhao Y, Liu S, Jiang Y, Wang K, Huang Y. Dynamic tensile strength of coal under dry and saturated conditions. Rock Mech Rock Eng. 2016;49:1709–20. https:// doi. org/ 10. 1007/s00603-015-0849-0.
  • 39. Petrov YV, Smirnov IV, Volkov GA, Abramian AK, Bragov AM, Verichev SN. Dynamic failure of dry and fully saturated limestone samples based on incubation time concept. J Rock Mech Geotech Eng. 2017;9:125–34. https://doi.org/10.1016/j.jrmge.2016.09.004.
  • 40. Wang S, Tang Y, Wang S. Influence of brittleness and confining stress on rock cuttability based on rock indentation tests. J Cent South Univ. 2021. https://doi.org/10.1007/s11771-021-4766-y.
  • 41. Li XB, Lok TS, Zhao J. Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng. 2005;38:21–39. https://doi.org/10.1007/s00603-004-0030-7.
  • 42. Zhu Q, Ma C, Li X, Li D. Effect of filling on failure characteristics of diorite with double rectangular holes under coupled static dynamic loads. Rock Mech Rock Eng. 2021. https://doi.org/10.1007/s00603-021-02409-y.
  • 43. Han Z, Li D, Zhou T, Zhu Q, Ranjith PG. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses. Int J Rock Mech Min Sci. 2020;131: 104352. https://doi.org/10.1016/j.ijrmms.2020.104352.
  • 44. Dai F, Huang S, Xia K, Tan Z. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng. 2010;43:657–66. https://doi.org/10.1007/s00603-010-0091-8.
  • 45. Li XF, Li HB, Zhang GK, Ju MH, Zhao J. Rate dependency mechanism of crystalline rocks induced by impacts: insights from grain-scale fracturing and micro heterogeneity. Int J Impact Eng. 2021. https://doi.org/10.1016/j.ijimpeng.2021.103855.
  • 46. Lankford J. Role of tensile microfracture in the strain rate dependence of compressive strength of fine-grained limestone—analogy with strong ceramics. Int J Rock Mech Min Sci Geomech Abstr. 1981;18:65. https://doi.org/10.1016/0148-9062(81)91225-0.
  • 47. Cai X, Zhou Z, Zang H, Song Z. Water saturation effects on dynamic behavior and microstructure damage of sandstone: Phenomena and mechanisms. Eng Geol. 2020. https://doi. org/ 10.1016/j.enggeo.2020.105760.
  • 48. Zhong C, Zhang Z, Ranjith PG, Lu Y, Choi X. The role of pore water plays in coal under uniaxial cyclic loading. Eng Geol. 2019;257: 105125. https://doi.org/10.1016/j.enggeo.2019.05.002.
  • 49. Kawai K, Sakuma H, Katayama I, Tamura K. Frictional characteristics of single and polycrystalline muscovite and influence of fluid chemistry. J Geophys Res Solid Earth. 2015;120:6209–18. https://doi.org/10.1002/2015JB012286.
  • 50. Ciantia MO, Castellanza R, di Prisco C. Experimental study on the water-induced weakening of calcarenites. Rock Mech Rock Eng. 2015;48:441–61. https://doi.org/10.1007/s00603-014-0603-z.
  • 51. Atkinson BK, Meredith PG. Stress corrosion cracking of quartz: a note on the influence of chemical environment. Tectonophysics. 1981;77:T1–11. https://doi.org/10.1016/0040-1951(81)90157-8.
  • 52. Van Eeckhout EM. The mechanisms of strength reduction due to moisture in coal mine shales. Int J Rock Mech Min Sci Geomech. 1976;13:61–7. https://doi.org/10.1016/0148-9062(76)90705-1.
  • 53. Lyu Q, Ranjith PG, Long X, Kang Y, Huang M. A review of shale swelling by water adsorption. J Nat Gas Sci Eng. 2015;27:1421–31. https://doi.org/10.1016/j.jngse.2015.10.004.
  • 54. Ožbolt J, Bošnjak J, Sola E. Dynamic fracture of concrete compact tension specimen: experimental and numerical study. Int J Solids Struct. 2013;50:4270–8. https://doi.org/10.1016/j.ijsolstr.2013.08.030.
  • 55. Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR. Review of experimental techniques for high rate deformation and shock studies. Int J Impact Eng. 2004. https://doi.org/10.1016/j.ijimpeng.2004.03.005.
  • 56. Zhou Z, Cai X, Ma D, Du X, Chen L, Wang H, Zang H. Water saturation effects on dynamic fracture behavior of sandstone. Int J Rock Mech Min Sci. 2019. https://doi.org/10.1016/j.ijrmms.2018.12.014.
  • 57. Rossi P. A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates. Mater Struct. 1991;24:422–4. https://doi.org/10.1007/BF02472015.
  • 58. Vegt I. Concrete in dynamic tension: the fracture process. Delft: Delft University of Technology; 2016.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-898fc870-eea8-401d-99a8-dcfced9d6b10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.