PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Bayesian-Informed Fatigue Life Prediction for Shallow Shell Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study introduces a Bayesian-informed framework for fatigue life prediction in shallow shell structures. The methodology focuses on inferring the Equivalent Initial Flaw Size Distribution (EIFSD), a critical parameter for structural durability. Bayesian inference, combined with a Co-Kriging surrogate model, enables statistically robust predictions while accounting for uncertainties in material properties, geometry, and loading. The Dual Boundary Element Method (DBEM) is employed for crack propagation due to its efficiency and re-meshing-free modelling. To improve inference efficiency, an iterative parameter space narrowing strategy is proposed. Instead of exhaustively sampling the entire space, the method begins with coarse discretisation to locate high-probability EIFSD regions, then refines them adaptively. A numerical example involving a fuselage window under cabin pressure demonstrates the method. Surrogate models trained on DBEM-generated data significantly reduce computational cost. The proposed strategy achieves high-precision inference, with only 0.059% error in the inferred mean and 5.2% in standard deviation, while reducing CPU time by 52% compared to dense sampling.
Rocznik
Tom
Strony
1--15
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
  • School of Electrical, Electronic and Mechanical Engineering, Queens Building, University of Bristol, BS8 1TR, Bristol, UK
  • School of Electrical, Electronic and Mechanical Engineering, Queens Building, University of Bristol, BS8 1TR, Bristol, UK
  • School of Electrical, Electronic and Mechanical Engineering, Queens Building, University of Bristol, BS8 1TR, Bristol, UK
  • School of Electrical, Electronic and Mechanical Engineering, Queens Building, University of Bristol, BS8 1TR, Bristol, UK
Bibliografia
  • Aliabadi, M. H. (2002). The boundary element method: Applications in solids and structures (Vol. 2). John Wiley & Sons.
  • Balbín, J., Chaves, V., & Larrosa, N. (2021). Pit to crack transition and corrosion fatigue lifetime reduction estimations by means of a short crack microstructural model. Corrosion Science, 180, 109171. https://doi.org/10.1016/j.corsci.2020.109171
  • Bergant, M., Larrosa, N. O., Yawny, A., & Madia, M. (2023). Short crack growth model for the evaluation of the fatigue strength of WAAM TI6AL-4V alloy containing pore-type defects. Engineering Fracture Mechanics, 289, 109467. https://doi.org/10.1016/j.engfracmech.2023.109467
  • Couckuyt, I., Dhaene, T., & Demeester, P. (2014). Oodace toolbox: A flexible object-oriented Kriging implementation. Journal of Machine Learning Research, 15, 3183-3186. https://doi.org/10.1016/j.ijfatigue.2006.10.027
  • Cross, R., Makeev, A., & Armanios, E. (2007). Simultaneous uncertainty quantification of fracture mechanics based life prediction model parameters. International Journal of Fatigue, 29, 1510-1515.
  • Davidson, D., Chan, K., McClung, R., & Hudak, S. (2003). Small Fatigue Cracks. In I. Milne, R. Ritchie, & B. Karihaloo (Eds.), Comprehensive structural integrity (pp. 129-164). Pergamon. https://doi.org/10.1016/B0-08-043749-4/04073-8
  • Dirgantara, T., & Aliabadi, M. (2001). Dual boundary element formulation for fracture mechanics analysis of shear deformable shells. International Journal of Solids and Structures, 38(44), 7769-7800. https://doi.org/10.1016/S0020-7683(01)00097-X
  • Dirgantara, T., & Aliabadi, M. (2002). Stress intensity factors for cracks in thin plates. Engineering Fracture Mechanics, 69(13), 1465-1486. https://doi.org/10.1016/S0013-7944(01)001369
  • Forrester, A., Sobester, A., & Keane, A. (2008, July). Engineering design via surrogate modelling: A practical guide. https://doi.org/10.1002/9780470770801
  • Kitagawa, H., & Takahashi, S. (1976). Applicability of fracture mechanics to very small cracks or cracks in the early stage. Proceedings of the Second International Conference on Mechanical Behavior of Materials, 627-631.
  • Koh, C. G., & See, L. M. (1994). Identification and uncertainty estimation of structural parameters. Journal of Engineering Mechanics, 120(6), 1219-1236. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:6(1219)
  • Kurchin, R., Romano, G., & Buonassisi, T. (2019). Bayesim: A tool for adaptive grid model fitting with Bayesian inference. Computer Physics Communications, 239, 161-165. https://doi.org/10.1016/j.cpc.2019.01.022
  • Larrosa, N., Chaves, V., Navarro, A., & Ainsworth, R. (2017). Application of the microstructural finite element alternating method to assess the impact of specimen size and distributions of contact/residual stress fields on fatigue strength. Computers & Structures, 179, 15-26. https://doi.org/10.1016/j.compstruc.2016.10.011
  • Larrosa, N., Navarro, A., & Chaves, V. (2015). Calculating fatigue limits of notched components of arbitrary size and shape with cracks growing in mode I. International Journal of Fatigue, 74, 142-155. https://doi.org/10.1016/j.ijfatigue.2015.01.002
  • Maierhofer, J., Gänser, H.-P., & Pippan, R. (2015). Modified Kitagawa-Takahashi diagram accounting for finite notch depths. International Journal of Fatigue, 70, 503-509. https://doi.org/10.1016/j.ijfatigue.2014.07.007
  • Makeev, A., Nikishkov, Y., & Armanios, E. (2007). A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models. International Journal of Fatigue, 29, 141-145. https://doi.org/10.1016/j.ijfatigue.2006.01.018
  • Miedlar, P., Berens, A., Gunderson, A., & Gallagher, J. (2002). Analysis and support initiative for structural technology (ASIST) -d Delivery order 0016: USAF damage tolerant design handbook: Guidelines for the analysis and design of damage tolerant aircraft structures, 835. https://apps.dtic.mil/sti/tr/pdf/ADA411872.pdf
  • Morse, L., Khodaei, Z. S., & Aliabadi, M. H. (2017). Multi-fidelity modeling-based structural reliability analysis with the boundary element method. Journal of Multiscale Modelling, 08(03n04), 1740001. https://doi.org/10.1142/S1756973717400017
  • Morse, L., Khodaei, Z. S., & Aliabadi, M. H. (2020). Statistical inference of the equivalent initial flaw size for assembled plate structures with the dual boundary element method. Engineering Fracture Mechanics, 238, 107271. https://doi.org/10.1016/j.engfracmech.2020.107271
  • Navarro, A., & de los Rios, E. R. (1988). Short and long fatigue crack growth: A unified model. Philosophical Magazine A, 57(1), 15-36. https://doi.org/10.1080/01418618808204496
  • Paris, P., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85(4), 528-534. https://doi.org/10.1115/1.3656900
  • Portela, A., Aliabadi, M. H., & Rooke, D. P. (1992). The dual boundary element method: Effective implementation for crack problems. International Journal for Numerical Methods in Engineering, 36(6), 1269-1287. https://doi.org/10.1002/nme.1620330611
  • Sankararaman, S., Ling, Y., & Mahadevan, S. (2010). Statistical inference of equivalent initial flaw size with complicated structural geometry and multi-axial variable amplitude loading. International Journal of Fatigue, 32(10), 1689-1700. https://doi.org/10.1016/j.ijfatigue.2010.03.012
  • Sankararaman, S., Ling, Y., Shantz, C., & Mahadevan, S. (2011). Uncertainty quantification in fatigue crack growth prognosis. International Journal of Prognostics and Health Management, 2. https://doi.org/10.36001/ijphm.2011.v2i1.1338
  • Soni, S. J., Kale, B. S., Chavan, N. C., & Kadam, S. T. (2014). Stress analysis of door and window of boeing 787 passenger aircraft subjected to biaxial loading [IJERTV3IS031482]. International Journal of Engineering Research & Technology (IJERT), 3(3), 2252-2256. https://www.ijert.org/stress-analysis-of-door-and-window-of-boeing-787-passenger-aircraft-subjected-to-biaxial-loading
  • Wen, P., Aliabadi, M., & Young, A. (1999). Transformation of domain integrals to boundary integrals in BEM analysis of shear deformable plate bending problems. Computational Mechanics, 24, 304-309. https://doi.org/10.1007/s004660050519
  • Wood, H. A., & Engle, R. M. E. (1979). USAF damage tolerant design handbook: Guidelines for the analysis and design of damage tolerant aircraft structures (Tech. Rep. No. AFFDL-TR-79-3021). Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base. Wright-Patterson AFB, Ohio. https://apps.dtic.mil/sti/tr/pdf/ADA078216.pdf
  • Zhuang, M., Morse, L., Sharif Khodaei, Z., & Aliabadi, M. (2024). Bayesian-informed fatigue life prediction in shallow shell structures with the dual boundary element method. Engineering Fracture Mechanics, 308, 110348. https://doi.org/10.1016/j.engfracmech.2024.110348
Uwagi
1. This article was presented at the 32nd Symposium of ICAF https://www.icaf2025.com/
2. This paper presents work undertaken as part of the “Advanced Landing Gear” project supported by Safran Landing Systems. The research was funded through the Aerospace Technology Institute (ATI), under application number: 10079975, as part of the ATI programme: Batch 40 research projects.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-898ace29-fd0a-46aa-a1fd-25c031d91c4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.