PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green synthesis, characterization and antibacterial activities of silver nanoparticles from strawberry fruit extract

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Silver nanoparticles (AgNPs) have been synthesized in the presence of Strawberry fruit extract (SBFE) at room temperature. The synthesized AgNPs was characterized by UV-vis spectroscopy, SEM, EDS, XRD, TEM and FTIR. The UV-vis spectra of the AgNPs show SPR band at 450 nm. TEM results indicate that AgNPs are spherical in shape and size range between 7–65 nm. Antibacterial activity of the synthesized AgNPs has been assessed against Pseudomonas aeruginosa and Bacillus licheniformis. The results show that AgNPs exhibit inhibitory effect and effect is a function of AgNPs concentration. The antibacterial activity of the prepared AgNPs has been compared with two antibiotics, amoxicillin and ciprofloxacin. It is found that the antibiotics perform better than AgNPs.
Rocznik
Strony
128--136
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • King Fahd University of Petroleum and Minerals, Centre of Research Excellence in Corrosion, Research Institute, Dhahran 31261, Saudi Arabia
autor
  • King Fahd University of Petroleum and Minerals, Centre of Research Excellence in Corrosion, Research Institute, Dhahran 31261, Saudi Arabia
autor
  • King Fahd University of Petroleum and Minerals, Centre of Research Excellence in Corrosion, Research Institute, Dhahran 31261, Saudi Arabia
  • University of Uyo, Department of Chemistry, Faculty of Science, Uyo, P.M.B. 1017 Uyo, Nigeria
autor
  • University of Uyo, Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Uyo, P.M.B. 1017 Uyo, Nigeria
Bibliografia
  • 1. Chowdhury, I. H., Ghosh, S., Roy, M. & Naskar, M. K. (2015). Green synthesis of water-dispersible silver nanoparticles at room temperature using green carambola (star fruit) extract. J. Sol–Gel Sci. Technol., 73, 199–207. DOI: 10.1007/s10971-014-3515-1.
  • 2. Ravi, S .S., Christena, L. R., SaiSubramanian, N. & Anthony, S. P. (2013). Green synthesized silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide pH range. Analyst. 138, 4370–4377. DOI: 10.1039/c3an00320e.
  • 3. Li, L., Zhou, G., Cai, J., Chen, J., Wang, P., Zhang, T., Ji, M. & Gu, N. (2014). Preparation and characterization of a novel nanocomposite: silver nanoparticles decorated cerasome. J. Sol–Gel Sci. Technol. 69, 199–206. DOI: 10.1007/s10971-013-3204-5.
  • 4. Gopinath, V., MubaraAli, D., Priyadarshini, S., Priyadharsshini, N. M., Thajuddin, N. & Velusamy, P. (2012). Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach, Coll. Surf. B: Biointerf. 96, 69–74. DOI:10.1016/j.colsurfb.2012.03.023.
  • 5. Bindhu, M. R. & Umadevi, M. (2013). Synthesis of mono-dispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochimica Acta Part A: Molecu. Biomole. Spectrosc. 101, 184–190. DOI:10.1016/j.saa.2012.09.031.
  • 6. Kruis, F., Fissan, H. & Rellinghaus, B. (2000). Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater. Sci. Eng. B. 69, 329–334. DOI: 10.1016/S0921-5107(99)00298-6.
  • 7. Magnusson, M., Deppert, K., Malm J., Bovin J. & Samuelson, L. (1999), Gold nanoparticles: production, resha-ping, and thermal charging, J. Nanoparticle Res. 1, 243–251. DOI: 10.1023/A:1010012802415.
  • 8. Goudarzi, M., Zarghami, Z. & Salavati-Niasari, M. (2016). Novel and solvent-free cochineal-assisted synthesis of Ag–Al2O3 nanocomposites via solid-state thermal decomposition route: characterization and photocatalytic activity assessment. J. Mater. Sci. Mater. Electron. 27, 9789–9797. DOI: 10.1007/s10854-016-5044-x.
  • 9. Oliveira, M., Ugarte, D., Zanchet, D. & Zarbin, A. (2005), Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J. Coll. Interf. Sci. 292, 429–435. DOI:10.1016/j.jcis.2005.05.068.
  • 10. Khomutov, G. & Gubin, S. (2002). Interfacial synthesis of noble metal nanoparticles. Mater. Sci. Eng. C. 22, 141–146. DOI: 10.1016/S0928-4931(02)00162-5.
  • 11. Mousavi-Kamazani, M. Salavati-Niasari, M., Mostafa-Hosseinpour-Mashkani, S. & Goudarzi, M. (2015). Synthesis and characterization of CuInS2 quantum dot in the presence of novel precursors and its application in dyes solar cells. Mater. Lett. 145, 99–103. DOI: 10.1016/j.matlet.2015.01.076.
  • 12. Joerger, R., Klaus, T. & Granqvist, C. (2000). Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv. Mater. 12, 407–409. DOI: 10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA-407>3.0.CO;2-O.
  • 13. Shankar, S., Ahmad, A., Paricha, R. & Sastry, M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13, 1822–1826. DOI: 10.1039/b303808b.
  • 14. Goudarzi, M., Mousavi-Kamazani, M. & Salavati-Niasari, M. (2017). Zinc oxide nanoparticles: solvent-free synthesis, characterization and application as heterogeneous nanocatalyst for photodegradation of dye from aqueous phase. J. Mater. Sci, Mater. Electron. 28, 8423–8428. DOI: 10.1007/s10854-017-6560-z.
  • 15. Mousavi-Kamazani, M. Salavati-Niasari, M., Goudarzi, M. & Zarghami, Z. (2017). Hydrothermal synthesis of CdIn2S4 nanostructures using new starting reagent for elevating solar cells efficiency. J. Mol. Liq. 242, 653–661. DOI: 10.1016/j.molliq.2017.07.059.
  • 16. Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H. & Nohi, A. A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 42, 919–923. DOI: 10.1016/j.procbio.2007.02.005
  • 17. Varshney, R., Mishra, A. N., Bhadauria, S. & Gaur, M. S. (2009). A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae. Digest. J. Nanomater. Biostruct. 4, 349–355.
  • 18. Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I. H. & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 3, 1–7. DOI: 10.1186/1477-3155-3-8.
  • 19. Vigneshwaran, N., Nachane, R. P., Balasubramanya, R. H. & Varadarajan, P. V. (2006). A novel one-pot ‘green’synthesis of stable silver nanoparticles using soluble starch, Carbohyd. Res. 341, 2012–2018. DOI: 10.1016/j.carres.2006.04.042.
  • 20. Ghaffari-Moghaddam, M. & Hadi-Dabanlou, R. (2014). Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract, J. Ind. Eng. Chem. 20, 739–744. DOI: 10.1016/j.jiec.2013.09.005.
  • 21. Padalia, H., Moteriya, P. & Chanda, S. (2014). Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential Arab. J. Chem. DOI: 10.1016/j.arabjc.2014.11.015.
  • 22. Goudarzi, M., Mir, N., Mousavi-Kamazani, M., Bagheri, S. & Salavati-Niasari, M. (2016). Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci. Rep. 6, 32539. DOI: 10.1038/srep32539.
  • 23. Rai, M., Yadav, A., and Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83. DOI: 10.1016/j.biotechadv.2008.09.002.
  • 24. Lara, H. H., Garza-Trevino, E. N., Ixtepan-Turrent, L. & Singh, D. K. (2011). Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 9, 1–8. DOI: 10.1186/1477-3155-9-30.
  • 25. Chernousova, S. & Epple, M. (2013), Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem. Int. Ed. Eng. 52, 1636–1653, https://doi.org/10.1002/anie.201205923.
  • 26. Ahmed, M. J., Murtaza, G., Mehmood, A. & Bhatti, T.M. (2015). Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity. Mater. Lett. 153, 10–13. DOI: 10.1016/j.matlet.2015.03.143.
  • 27. Manganaris, G. A., Goulas, V., Vicente, A. R. & Terry, L. A. (2014). Berry antioxidants: small fruits providing large benefits. J. Sci. Food Agric. 94, 825–33. DOI: 10.1002/jsfa.6432.
  • 28. Basu, A., Nguyen, A., Betts, N. M. & Lyons, T. J. (2014). Strawberry as a functional food: an evidence-based review. Critical Rev. Food Sci. Nutri. 54, 790–806. DOI: 10.1080/10408398.2011.608174.
  • 29. Giampieri, F., Alvarez-Suarez, J. M., Mazzoni, L., Romandini, S., Bompadre, S., Diamanti, J., Capocasa, F., Mezzetti, B., Quiles, J. L., Ferreiro, M. S., Tulipani, S. & Battino, M. (2013). The potential impact of strawberry on human health. Nat. Prod. Res. 27, 448–55. DOI: 10.1080/14786419.2012.706294.
  • 30. Rios, J. L., Recio, M. C. & Villar, A. (1988). Screening methods for natural products with antimicrobial activity: a review of the literature. J. Ethnopharmacol. 23, 127–149. DOI: 10.1016/0378-8741(88)90001-3.
  • 31. Wei, D., Sun, W., Qian, W., Ye, Y. & Ma, X. (2009). The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohyd. Res. 344, 2375–2382. DOI: 10.1016/j.carres.2009.09.001.
  • 32. Solomon, M. M. & Umoren, S. A. (2016), In-situ preparation, characterization and anticorrosion property of polypropylene glycol/silver nanoparticles composite for mild steel corrosion in acid solution. J. Coll. Interf. Sci. 462, 29–41. DOI: 10.1016/j.jcis.2015.09.057.
  • 33. Stamplecoskie, K. G. & Scaiano, J. C. (2010). Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J. Am. Chem. Soc. 132, 1825–1827. DOI: 10.1021/ja910010b.
  • 34. Solomon, M. M., Umoren, S. A. & Abai, E. J. (2015). Poly(methacrylic acid)/silver nanoparticles composites: In-situ preparation, characterization and anticorrosion property for mild steel in H2SO4 solution. J. Mol. Liq. 212, 340–351. DOI: 10.1016/j.molliq.2015.09.028.
  • 35. Prathna, T. C., Chandrasekaran, N., Raichur, A. M. & Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Coll. Surf. B: Biointerf. 82, 152–159. DOI: 10.1016/j.colsurfb.2010.08.036.
  • 36. Jagadeesh, B .H., Prabha, T. N. & Srinivasan, K. (2004). Activities of β-hexosaminidase and α-mannosidase during development and ripening of bell capsicum (Capsicum annuum var.variata). Plant Sci. 167, 1263–1271. DOI: 10.1016/j.plant-sci.2004.06.031.
  • 37. Cordenunsi, B. R., Oliveira do Nascimento, J. R., Genovese, M. I. & Lajolo, F. M. (2002). Influence of cultivar on quality parameters and chemical composition of strawberry fruits grown in Brazil, J. Agric. Food Chem. 50, 2581–2586. DOI: 10.1021/jf011421i
  • 38. Zayed, M. F., Eisa, W. H., Abdel-Moneam, Y. K., El-Kousy, S. M. & Atia, A. (2015). Ziziphus spina-christi based bio-synthesis of Ag nanoparticles. J. Ind. Eng. Chem. 23, 50–56. DOI: 10.1016/j.jiec.2014.07.041
  • 39. Lateef, A., Azeez, M. A., Asafab, T. B., Yekeen, T. A., Akinboro, A., Oladipo, I. C., Azeez, L., Ajibade, S. E., Ojo, S. A., Gueguim-Kana, E. B. & Beukes, L. S. (2016). Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive. J. Taibah Univer Sci. 10, 551–562. DOI: 10.1016/j.jtusci.2015.10.010.
  • 40. Solomon, M. M., Umoren, S. A. & Ebenso, E. E. (2015). Polypropylene glycol-silver nanoparticle composites: a novel anticorrosion material for aluminum in acid medium, J. Mater. Eng. Perform. 24, 4206–4218. DOI: 10.1007/s11665-015-1716-6.
  • 41. Rao, Y. S., Kotakadi, V. S., Prasad, T. N. V. K. V., Reddy, A. V. & Sai Gopal, D. V. R. (2013). Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim. Acta Part A: Mol. Biomol. Spec. 103, 156–159. DOI: 10.1016/j.saa.2012.11.028.
  • 42. Edison T. J. I. & Sethuraman M. G. (2012). Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47, 1351–1357. DOI: 10.1016/j.procbio.2012.04.025.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8989e725-3d72-4570-beb7-9e18b81b17ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.