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A b s t r a c t . The paper presents a model describing the 

behavior of participants of the oligopolistic market. Economic 

model of the oligopoly – a generalized Cournot-Puu model 

is constructed. Notion of Cournot equilibrium is introduced. 

Study on the stability of the equilibrium point of the construct-

ed model is described. As an example, the model of duopoly is 

considered in detail.

K e y  w o r d s : oligopoly, duopoly, a generalized Cournot-

Puu model, Cournot equilibrium, linearization of the system, 

stability, Routh-Hurwitz procedure.

INTRODUCTION

Many scientifi c papers have been devoted to investi-

gations of the enterprises stability in different economic 

conditions. In particular, Chukhray N. studied the com-

petition as a strategy of enterprise functioning in the 

ecosystem of innovations [16]. Feshchur R., Samulyak V., 

Shyshkovskyi S. and Yavorska N. analyzed different 

analytical instruments of management development of 

industrial enterprises [21]. Moroz O., Karachyna N. and 

Filatova L. studied economic behavior of machine-build-

ing enterprises in analytic and managerial aspects [26]. 

In turn, Petrovich J.P. and Nowakiwskii I.I. analyzed the 

modern concept of a model design of an organizational 

system of enterprise management [28]. In this article 

we examine the behavior of enterprises in oligopolistic 

market.

Two main types of market structure without high

competition are described in the scientifi c literature. 

This is an oligopoly and oligopsony. Oligopoly is a such 

market structure in which a few large manufacturing 

fi rms dominates. Oligopsony is a market structure in 

which a few large customers dominates. When they say 

“big three”, “big four” or “big six”, then we are talking 

about oligopoly.

Oligopoly is a market structure in which the small 

number of rival fi rms dominates in the same sector. One 

or two of them produce a signifi cant share of production 

in this industry. The emergence of new vendors is diffi cult 

or impossible. Typically, there are from two to ten fi rms 

in oligopolistic markets. They account for half or more of 

total product sales. In such markets all or some of the fi rms 

obtain substantial profi t in the long time interval, because 

entry barriers make it diffi cult or impossible to input of 

fi rms-newcomers to the market of this product. A product 

may be homogeneous (standardized) and heterogeneous

(differentiated) on the oligopolistic market. If the market 

sells a homogeneous product (i.e., buyers have no choice), 

we are dealing with homogeneous oligopoly, and if the 

various product (i.e., buyers can choose according to 

their preferences), we are dealing with a heterogeneous 

oligopoly (differentiated oligopoly) [19].

Oligopoly is the predominant form of market struc-

ture. Automotive industry, steelmaking industry, petro-

chemical industry, electrical industry, energy industry, 

computer industry and others belong to oligopolistic 

industries. In the oligopolistic markets, some of the fi rms 

can exert infl uence on the product price because they 

cover a signifi cant share of its products in total manufac-

tured product. Sellers are aware of their interdependence 

in this market. It is assumed that each fi rm in the industry 

recognizes that a change in its price or output provokes 

a reaction with other fi rms. The reaction, which is one 

of the oligopolist fi rms expects from competing fi rms in 

response to changes in prices established by it, output of 

production or changes in the marketing strategy is the 

main factor that determines its decision. Such reactions 

can infl uence the equilibrium of oligopolistic markets.

Suffi ciently large number of models describing the 

behavior of fi rms in oligopolistic market is known today.

Oligopolistic markets are distinguished after this 

sign, or their members-oligopolists operate completely 

independently of each other, at their own risk, or, alter-

natively, enter into a conspiracy that may be obvious, 
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open or secret (closed). In the fi rst case, we usually say 

about noncooperative oligopoly, and in the second case 

we say about cooperative oligopoly, one of the forms of 

which is a cartel.

Obviously, when we analyze the behavior of oligopo-

lists operating completely independently of each other, 

i.e. in the case of noncooperative oligopoly, differences 

in assumptions regarding the reaction of competitors are 

crucial. Depending on what oligopolist chooses control 

variables – the value of output or price – we distinguish 

oligopoly of fi rms that set the value of output, called 

quantitative oligopoly, and oligopoly of fi rms that set 

price, called price oligopoly.

There are models of quantitative oligopoly: Cournot 

model (Antoine-Augustin Cournot, 1838), Chamberlain 

model (Edward Hastings Chamberlin), and Stackelberg 

model (Heinrich von Stackelberg), which offers an asym-

metric behavior of oligopolists; and models of pricing oli-

gopoly: Bertrand model (Joseph Louis François Bertrand, 

1883), Edgeworth model (Francis Ysidro Edgeworth) and 

Sweezy model (Paul Sweezy). 

Let us consider Cournot model, from which the mod-

ern theory of oligopoly began. Basic model of oligopoly 

was proposed in 1838 by the French mathematician and 

economist Antoine Augustin Cournot. In the work [17, 

30] he posed the problem of oligopolistic interdependence 

and the need for each fi rm in determining its market 

strategy to take into account the behavior of competitors. 

Cournot considered duopoly, i.e. situation when there 

are only two fi rms on the market. It is assumed in this 

model that both fi rms produce a standardized product 

(with the same parameters) and know the market demand 

curve. Based on this, each fi rm determines its output, 

taking into account that its competitor also make deci-

sions about their own output similar product. Moreover, 

the fi nal price of the product will depend on the total 

production (both fi rms together) that hits the market.

Thus, the essence of Cournot model is that each fi rm 

takes the output of its rival constant. Based on the data 

and information about the market demand for the product, 

the fi rm makes its own decision on the establishment of 

such volumes of its production, which would provide the 

maximum profi t (based on compliance with the rules of 

equality of marginal revenue and marginal cost). Thus, 

the main problem of this model is to determine at which 

of output both fi rms reach equilibrium.

Cournot oligopoly model is the most actively studied, 

although initially the Cournot ideas have been criticized 

for their simplicity. Various modifi cations of the model 

have been made by many scientists. This enabled to im-

prove it.

In particular, T. Puu in 1991 [29], while studying 

Cournot model, introduced another type of economic 

conditions, i.e. iso-elastic demand with different constant 

marginal costs, under which meaningful unimodal reac-

tion function were developed. Since the model has been 

discussed in numerous amounts of publications [13, 32]. 

Several models were generalized by using adaptive rules 

and heterogeneous participants [5, 7, 8, 9, 10, 12, 37].

New properties of the Cournot-Puu model were pro-

posed by T. Puu in one of his recent publications [36].

The research of Cournot model showed that it has an 

ample dynamic behavior. Some authors considered the 

quantitative oligopoly with homogeneous expectations 

and found a variety of complex dynamics, such as the 

appearance of strange attractors with fractal dimensions 

[2, 3]. The complex chaotic behavior in Cournot-Puu duo-

poly model has been studied in recent works [7, 14, 22].

Discrete dynamics of the triopoly game with homoge-

neous expectations is considered in the following works 

[1, 6]. The authors of these works have shown that the 

dynamics of Cournot oligopoly games may never reach 

the point of equilibrium and in the long run bounded 

periodic or chaotic behavior may be observed. Model 

with heterogeneous players were studied later, like in 

the works [18, 23]. 

B. Rosser also made its contribution to the theory 

of oligopoly. In the work [33] he made a detailed review 

of the theoretical development of oligopoly, namely, het-

erogeneous expectations, dynamics and stability of the 

market. Onozaki et al. investigated the stability, chaos 

and multiple attractors of heterogeneous two-dimensional 

cobweb model in the paper [27]. 

Recent studies of the duopoly and triopoly dynamics 

of Cournot model with heterogeneous players are pre-

sented in the works [4, 5, 19]. Problems of construction 

and study of models with N heterogeneous players are 

alternative in this direction.

Considering the numerous studies that show the 

chaotic dynamics in the Cournot-Puu oligopoly model 

(duopoly and triopoly model with homogeneous and het-

erogeneous players), there is the problem of control the 

chaos that occurs in these models. Some methods, such 

as DFC-method [15], OGY-method for controlling the 

chaos, pole placement method [24] were applied to the 

Cournot-Puu duopoly model. But studies of oligopolis-

tic market only in case of duopoly is very limited, and 

therefore the question of building a generalized model 

arises naturally. 

Some aspects of the nonlinear model of oligopoly in 

the case N fi rms were considered in recent works [25, 

31]. Therefore, our alternative future research is to build 

a generalized model of Cournot-Puu and to investigate 

the stability of the equilibrium point and to apply of 

methods of control the chaos that occurs in this model.

In this work the generalized model of oligopoly 

Cournot-Puu is considered and the concept of Cournot 

equilibrium is introduced. A signifi cant result is to estab-

lish conditions under which the equilibrium point is stable.

GENERALIZED COURNOT-PUU MODEL 

To construct a model, we need to describe the behav-

ior of market participants: motivation of their behavior, 

conditions in the market and the restrictions which they 

face.



OLIGOPOLISTIC MARKET: STABILITY CONDITIONS OF THE EQUILIBRIUM POINT 17

Let n fi rms operate in an oligopolistic markets, n  2. 

(If n = 1 we have a situation of monopoly.) Denote the 

oligopolist fi rms by F
1
, F

2
,…, F

n
, which produce quantities 

q
1
, q

2
,…, q

n
 respectively. Let’s introduce assumption of 

Cournot and Puu to get the reaction functions.

Cournot assumption (generalized). Each firm 

i (i=1,2,…,n) expects its rival j ( j=1,2,…,n, j i) to of-

fer the same quantity for sale in the current period as it 

did in the preceding period.

According to this assumption, the general reaction 

functions of each fi rm are as follows:

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 2 3

2 2 1 3

1 1

1 , ,..., ,

1 , ,..., ,

.............................................

1 , 2 ,..., .

n

n

n n n

q t f q t q t q

q t f q t q t q

q t f q t q t q −

+ =

+ =

+ =  (1)

Reaction function is a curve that shows the output 

produced by one fi rm for each given output of another 

fi rm. The set of points on the reaction curve shows what 

the reaction will be of one of the fi rms (when choosing 

the amount of own manufacture) to the decision of other 

fi rms regarding their output. Thus, each of the functions 

q
i
 (t + 1) is a reaction curve of oligopolist i on output 

offered by other oligopolists.

Puu assumption 1 (generalized). The market demand 

is assumed to be iso-elastic, so that price p is reciprocal 

to the total demand q, i.e., p = 1/q.

Puu assumption 2 (generalized). Goods are per-

fect substitutes, so that demand equals supply, i.e., 

q = q
1
 + q

2
 + … +q

n
.

Puu assumption 3 (generalized). The competitors 

have constant but different marginal costs, denoted by 

c
i
, i = 1,…, n.

Based on these assumptions, the profi t of fi rm F
i

(i=1,2,…,n) becomes:

( ) ( )

( ) ( )
( )

1,

1
1 1 .

1

i

i i in

i j

j j i

q t
U t c q t

q t q t
= ≠

+
+ = − +

+ + ∑
 (2)

Each of e fi rms wants to reach such output that would 

maximize its income:

( )
( )

( ) ( )
( )

( )
( )

( ) ( )

1, 1,

2

1,

1 1 1
11

0.
1

1

n n
j

i j i

j j i j j i ii

i
n

i

i j

j j i

q t
q t q t q t

q tU t
c

q t
q t q t

= ≠ = ≠

= ≠

∂ 
+ + − + +  ∂ +∂ +  = − =

∂ +  
+ + 

 

∑ ∑

∑
 (3)

Hence, given the Cournot assumption that:

( )
( )

0, ,
1

j

i

q t
i j

q t

∂
= ≠

∂ +
 (4)

obtain the equation:

( ) ( ) ( )
2

1, 1,

1 0, 1, .
n n

j i i j

j j i j j i

q t c q t q t i n
= ≠ = ≠

 
− + + = = 

 
∑ ∑  (5)

The solutions of equations (5) are the reaction func-

tion for fi rms F
1
,F

2
,…,F

n
. Then we will have a system 

of equations:

( )
( )

( )
1, 1,

1 , 1, .
n n

j

i j

j j i j j ii

q t
q t q t i n

c= ≠ = ≠

+ = − =∑ ∑  (6)

We need to solve the system (6) to fi nd the equilib-

rium points. We obtain two equilibrium points: a trivial 
(0,0, ,0)

n

…
14243  and non-trivial ( )* * *

1 2, ,..., nq q q . All the future 

research will deal with the only nontrivial point, called 

the Cournot equilibrium or Nash equilibrium.

The value of the equilibrium point we can write as:

( )
( )

1,*

2

1

2

1 , 1, .

n

i j

j j i

i
n

j

j

n c c

q n i n

c

= ≠

=

− − +

= − =
 
 
 

∑

∑
 (7)

METHODOLOGY OF THE EQUILIBRIUM 

POINT STABILITY ASSESSMENT

Let us investigate the stability of the equilibrium 

point ( )* * *

1 2, ,..., nq q q . We linearize the system (6) at the 

equilibrium point. Denote: 

( ) ( ) * , 1, 2,..., ,i i iq t q t q i nδ = − =  (8)

and proceed to deviations:

( )

( )
( ) ( )

( )
* * *
1 2

*

* *

1, 1,

1
, ,...,

1

1
, 1, .

n

n n
j

i i j

j j i j j ii

n
i

j

j j q q q

q
q t q q

c

q t
q t i n

q t

δ

δ

= ≠ = ≠

=

+ + = − +

 ∂ +
+ ⋅ = 

∂  

∑ ∑

∑  (9)

We linearize the system (9), substitute the value of 

the equilibrium point (7) and write the resulting system 

in matrix form:

( ) ( )1 ,q t J q tδ δ+ = ⋅  (10)

where:

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2

1 2

1 1 , 1 ,..., 1 ,

, ,..., .

T

n

T

n

q t q t q t q t

q t q t q t q t

δ δ δ δ

δ δ δ δ

+ = + + +

=  (11)
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J is Jacobi matrix of the linearized system:

 

1 1

2 2 2

th position

0 ... ... ... ... ...

0 ... ... ... ...

... ... ... ... ... ... ... ...

... ... 0 ...

... ... ... ... ... ... ... ...

... ... ... ... ... 0

i i i i

i

n n

p p

p p p

J p p p p

p p

−

 
 
 
 
 =
 
 
 
 
 

, (12)

elements p
i
 of this matrix are given by:

( )
( )

1 2 ... 3 2 ...
, 1, .

2 1

i n

i

i

c c n c c
p i n

n c

+ + + − + +
= =

−
 (13)

The stability of system (10) is governed by its char-

acteristic equation: 

( )det 0,J Iλ− =  (14)

or

1

1 1... 0.n n

n na a aλ λ λ−
−+ + + + =  (15)

As it is known [34], the construction of the analytical 

form of the coeffi cients of the characteristic polynomial 

(15) can be carried out using the principal minors of 

Jacobi matrix J.

The coeffi cient at n–1 is equal to the trace of the 

matrix, taken as negative. As in our case all diagonal 

elements are equal to zero, then:

1 0.a trJ= − =  (16)

Free member a
n
 of the characteristic polynomial (15) 

of Jacobi matrix J is equal to the determinant of this ma-

trix multiplied by (–1)n where n is the order of matrix. So:

( )

1 1

2 2

0 ...

0 ...
1 .

... ... ... ...

... 0

n

n

n n

p p

p p
a

p p

= −  (17)

We construct coeffi cients , 2, 1ia i n= −  at , 2,1m m nλ = −
by the formula:

( )

( ) ( )

1

1 , 2, 1,

!
, ,

! !

k
n m

i j

j

n

i

a i n

n
m n i k

i n i

−

=

= − ∆ = −

= − = =
−

∑

 (18)

where: , 1,j j k∆ =  are the principal minors of Jacobi 

matrix J of order n – m, formed by deletion of m rows 

with numbers i
1
, i

2
,…, i

m
 and m columns with the same 

numbers.

By the well-known theorem of von Neumann, the 

equilibrium point ( )* * *

1 2, ,..., nq q q  is asymptotically stable 

if for all its eigenvalues  of Jacobi matrix J the follow-

ing condition holds:

1.λ <  (19)

Consider the space A of all coeffi cients of the charac-

teristic polynomials of the order n. Condition (19) defi nes 

in this space the geometrical domain of asymptotical sta-

bility. The analytical description of this stability domain 

can be constructed with the help of the classical Routh-

Hurwitz procedure in the form of non-linear inequalities. 

This procedure can be described as follows [34].

At fi rst we construct the parameters:

0

0

n

i

i

b a
=

=∑ , where 0 1a = , ( )1

0

2
n

i

i

b a n i
=

= −∑ ,

( ) ( )( )
0 0

1
n n

k n i i

r i r k k

i k

b a −
−

= =

= −∑ ∑ ,

 where: ( )
( )

!
, , 0,

! !

0, ,

0, 0,

i

k

i
i k k

k i k

i k

k

 ≥ ≥ −
= <
 <



 (20)

( ) ( )1

1 2 11 ... 1 1 .
n n

n n nb a a a a
−

−= − + − + − + −

Then we construct the matrix:

1 3 5

0 2 4

1 3

0 2

... ... ...

... ... ...

0 ... ... ...
.

0 ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

b b b

b b b

b b

b b

 
 
 
 
 
 
 
  
 

 (21)

and its principal (diagonal) minors , 1,r r n∆ =  of order r,

that are built from the fi rst r column and the fi rst r row 

of the upper left corner of the matrix. 

The conditions of asymptotical stability are:

0 0, 0, 1,2,..., ,rb r n> ∆ > =  (22)

and the boundaries of the stability domain in the space A

determined with the help of the above-described Routh-

Hurwitz procedure by the non-linear equalities:

0 0, 0, 1,2,..., .rb r n= ∆ = =  (23)

On the boundaries (23) the absolute values of some 

eigenvalues of the Jacobi matrix are equal 1 and the 

plethora of different bifurcation phenomena exist [34].
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Detailed description of the Routh-Hurwitz procedure 

for two- and three-dimensional case, and geometric con-

struction of the stability domain is considered in studies 

of M. Sonis [34, 35].

STABILITY OF THE EQUILIBRIUM POINT 

OF THE COURNOT-PUU DUOPOLY MODEL

As an example, in this section we will explore in 

detail the stability of the Cournot equilibrium of the 

duopoly model. In the case of duopoly there are only 

two fi rms F
1
 and F

2
 on the market in the same industry, 

with output q
1
 and q

2
, respectively.

According to the generalized model (6), Cournot-Puu 

duopoly model is as follows (see also [7]):

( ) ( ) ( )

( ) ( ) ( )

2

1 2

1

1

2 1

2

1 ,

1 .

q t
q t q t

c

q t
q t q t

c

+ = −

+ = −  (24)

Functions q
1
 (t + 1) and q

2
 (t + 1) with parameter values 

c
1
 = 1, c

2
 = 6,25 and initial conditions q

1
(0) = q

2
(0) = 0,01 

have the form as shown in Fig. 1.

Fig. 1. The reaction functions of fi rms F
1
 and F

2

Nontrivial equilibrium point of the system (24) – 

Cournot equilibrium (Nash equilibrium) – is a point of 

intersection of the reaction curves and according to the 

expression (7), has the value: 

( ) ( )
* *2 1

1 22 2

1 2 1 2

, .
c c

q q
c c c c

= =
+ +

 (25)

Profi t of the duopolists at the Cournot equilibrium 

is, respectively:

( ) ( )

2 2

* *2 1

1 22 2

1 2 1 2

, .
c c

U U
c c c c

= =
+ +

 (26)

Let us investigate the stability of the equilibrium point 

(25). We linearize the system (24) near the equilibrium 

point (25), as it was done for a generalized model in the 

preceding paragraph, and we obtain the Jacobi matrix:

2 1

1

1 2

2

0
2

.

0
2

c c

c
J

c c

c

− 
 
 =
 −
 
 

 (27)

The eigenvalues of the matrix Jacobi J of the lin-

earized system are the solutions of the characteristic 

polynomial:

2 2

1 2 det 0,a a trJ Jλ λ λ λ+ + = − + =  (28)

where:

1 0,a trJ= − =

( )( ) ( )

2 1

1

2

1 2

2

2

2 1 1 2 2 1

1 2 1 2

0
2

det

0
2

.
4 4

c c

c
a J

c c

c

c c c c c c

c c c c

−

= = =
−

− − −
= − =  (29)

Equilibrium point ( )* *

1 2,q q  is asymptotically stable 

if for all the eigenvalues  of the Jacobi matrix J condi-

tion (19) holds. Routh-Hurwitz procedure for n = 2 is 

as follows:

We construct the parameters (20):

0 1 2

1 2

2 1 2

1 ,

2 2 ,

1 .

b a a

b a

b a a

= + +

= −

= − +  (30)

Then we construct a matrix:

1

0 2

0
,

b

b b

 
 
 

 (31)

and its principal minors:

1 1

1

2

0 2

,

0
.

b

b

b b

∆ =

∆ =  (32)

Classical conditions of asymptotic stability are:

0 1 20, 0, 0.b > ∆ > ∆ >  (33)

It means that:

0 1 2 1 20, 0, 0,b b b b> > ∆ = >  (34)
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namely:

0 1 20, 0, 0.b b b> > >  (35)

Conditions (35) according to the values of the pa-

rameters b
i
, i = 0,1,2 (30) and the coeffi cients a

i
, i = 1,2 

(29) can be written as:

1 det 0,

2 2det 0,

1 det 0.

trJ J

J

trJ J

− + >

− >

− + >  (36)

Or:

det 1,

det 1,

det 1.

J trJ

J

J trJ

> −

<

> − −  (37)

Fig. 2. shows the domain of attraction (stability), 

which is the triangle in the space of eigenvalues 

{a
1
,a

2
} with vertices:

( 2,1), (2,1), (0, 1).A B C− −  (38)

The sides of the triangle of stability are defi ned by 

the following straight lines, the divergence boundary:

1 21 0 or det 1,a a J trJ+ + = = −  (39)

the fl ip boundary,

1 21 0 or det 1a a J trJ− + = = − − , (40)

and the fl utter boundary,

2 1 or det 1.a J= =  (41)

  

 

B(2,1) 

C(0,-1) 

 

 

A(-2,1) 

Fig. 2. Stable region

Obviously, in our case, the conditions det J > trJ – 1 

and det J > –trJ – 1 are satisfi ed (trJ = 0), loss of stability 

occurs when the absolute value of eigenvalues becomes 

equal to unity, i.e., when det J = 1 either 
( )2

2 1

1 2

1
4

c c

c c

−
= .

Denote the ratio of marginal costs, 2

1

r

c
c

c
= , then 

( ) ( )2 2

2 1

1 2

1
det .

4 4

r

r

c c c
J

c c c

− −
= =

Stability domain of Cournot equilibrium will be:

( )2
1

1,
4

r

r

c

c

−
<  (42)

or

2 6 1 0.
r r
c c− + <  (43)

Namely:

1 2
,

r r r
c c c< <  (44)

where: 
1 2
, 0

r r
c c >  are the roots:

1,2
3 8

r
c = ± , (45)

of the quadratic equation:

2 6 1 0.
r r
c c− + =  (46)

Thus, the dynamic process is stable, if the value c
r

falls inside the interval bounded by the obtained solu-

tion, i.e.:

3 8 3 8.
r
c− < < +  (47)

Without loss of generality we will assume that c
2

c
1

(i.e., c
r

 1), then we will obtain a narrowing of this 

interval:

1 3 8.
r
c≤ < + (49)

From the condition of inalienability output for both 

fi rms and properties of their reaction functions, we de-

termined the entire range of values related marginal costs 

c
r

[11]:

4 25
.

25 4
r
c≤ ≤  (50)

Taking into account the assumption that c
r

 1, we 

will have a range of values c
r

25
1 .

4
r
c≤ ≤  (51)

Thus, we have found that the equilibrium point is 

stable in the interval (see equation (49)):

1 3 8.
r
c≤ < +

So, the equilibrium point is unstable in the second 

part of the interval:

3 8 25 / 4.
r
c+ ≤ ≤  (52)
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Limit cycles and chaos exist in the system at these 

values c
r
. Bifurcation diagram for fi rms F

2
 with output 

q
2
 with respect to the ratio c

r
 of marginal costs is pre-

sented in Fig. 3.

Fig. 3. Bifurcation diagram of the fi rm F
2
 with the production 

q
2

CONCLUSIONS

In this paper, we generalize Cournot-Puu duopoly 

model when there are N fi rms on the oligopolistic market. 

It is considered that each fi rm-oligopolist produces the 

same standard products, which it has to sell for the same 

price (established based on the size of the total produc-

tion in the industry). In such conditions, each company 

in this market (through decision on its own output) can 

infl uence the total output, and thus its market price. In 

addition, each fi rm is characterized by a function of 

optimal reaction. This function describes the optimal 

output (one that maximizes profi ts) of one fi rm according 

to the decision on the output of other fi rms.

The model is a system of nonlinear equations that has 

both trivial and non-trivial equilibrium points. Nontrivial 

point of equilibrium is Cournot (Nash) equilibrium. In this 

type of equilibrium each fi rm makes a decision, which 

enables to maximize its profi t, anticipating the same be-

havior of competitor. In oligopoly equilibrium occurs at 

a lower price, more products and less overall profi t com-

pared to pure monopoly. Given the fi rst two parameters 

(lower price and more products), oligopoly can be consid-

ered the best option for a market economy than monopoly.

The process of investigating the stability of the 

Cournot equilibrium point in the case of oligopoly is 

a time-consuming task. It can be carried out using the 

Routh-Hurwitz procedure. The article presents the study 

of the stability of equilibrium point for the duopoly. The 

value of the system parameter c
r
, at which the equilibrium 

point is stable, is established.
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