PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New materials based on hyaluronic acid and egg albumin mixture

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, new materials based on the mixture of hyaluronic acid and albumin from chicken eggs have been studied. Tests were carried out to determine the molecular weight of the tested hyaluronic acids. The properties of hyaluronic acid were investigated and significant differences were found in the mechanical properties of the tested compound, depending on its molecular weight. It was found that egg albumin can be combined with hyaluronic acid and thin films can be obtained. Spectrometric tests were performed both for pure compounds and for mixtures of hyaluronic acid with chicken egg albumin. IR spectroscopy showed that interactions between hyaluronic acid and egg albumin are mainly by hydrogen bonds, as the shifts in the main bands in IR spectra were observed. The addition of egg albumin to hyaluronic acid leads to the decrease of its mechanical properties. The deterioration of the mechanical properties of polymer films from HA-albumin mixtures may be due to interactions between compounds which were shown in the IR spectra. The thin films based on hyaluronic acid and egg albumin blend can be used as adhesive materials in biomedicine and cosmetics. Both biopolymers are biocompatible and biodegradable so we can expect a biocompatible and biodegradable material for potential application as adhesives.
Rocznik
Strony
15--21
Opis fizyczny
Bibliogr. 25 poz., rys., wykr., zdj.
Twórcy
  • Department of Biomaterials and Cosmetics Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
  • Department of Biomaterials and Cosmetics Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
  • Department of Biomaterials and Cosmetics Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
Bibliografia
  • [1] Tyan Y.C., Yang M.H., Chang C.C., Chung T.W.: Biocompatibility of Materials for Biomedical Engineering. Advances in Experimental Medicine and Biology book series 1250 (2020) 125-140.
  • [2] Joyce K., Fabr, G.T., Bozkurt Y.: Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduction and Targeted Therapy 6 (2021) 122.
  • [3] Sionkowska A.: Current research on the blends of natural and synthetic polymers: Review. Progress in Polymer Science 36 (2011) 1254-1276.
  • [4] Werkmeister J.A., Edwards G.A., Casagranda F., White J.F., Ramshaw J.A.M.: Evaluation of a collagen-based biosynthetic materials for the repair of abdominal wall defects. Journal of Biomedical Materials Research 39 (1998) 429-36.
  • [5] Muthuraj R., Misra M., Mohanty A.K.: Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science 135 (2018) 45726.
  • [6] Younas M., Noreen A., Sharif A., Majeed A., Hassan A., Tabasum S., Mohammadi A., Zia K.M.: A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modelling. International Journal of Biological Macromolecules 124 (2019) 591-626.
  • [7] Tabasum S., Younas M., Zaeem M.A., Majeed I., Majeed M., Noreen A., Iqbal M.N., Zia K.M.: A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modelling. International Journal of Biological Macromolecules 122 (2019) 969-996.
  • [8] Tabasum S., Noreen A., Maqsood M.F., Umar H., Akram N., Nazli Z.I.H., Chatha S.A.S., Zia K.M. A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers. International Journal of Biological Macromolecules 120 (2018) 603-32.
  • [9] Heidenreich A.C., Perez-Recalde M., Wusener A.G., Hermida E.B.: Collagen and chitosan blends for 3D bioprinting: A rheological and printability approach. Polymer Testing 82 (2020) 106297.
  • [10] Jurak M., Wiącek A.E., Ładniak A., Przykaza K., Szafran K.: What affects the biocompatibility of polymers?. Advances in Colloid and Interface Science 294 (2021) 102451.
  • [11] Xia G.X., Wu Y.M., Bi Y.F. et al.: Antimicrobial Properties and Application of Polysaccharides and Their Derivatives. Chinese Journal of Polymer Science 39 (2021) 133–146.
  • [12] Bealer E.J., Kavetsky K., Dutko S., Lofland S., Hu X.: Protein and Polysaccharide-Based Magnetic Composite Materials for Medical Applications. International Journal of Molecular Sciences 21 (2020) 186.
  • [13] Wang H., Deng H., Gao M., Zhang W.: Self-Assembled Nanogels Based on Ionic Gelation of Natural Polysaccharides for Drug Delivery. Frontiers in Bioengineering and Biotechnology 9 (2021) 703559.
  • [14] Vieira S., Strymecka P., Stanaszek L., Silva-Correia J., Drela K., Fiedorowicz M. Malysz-Cymborska I., Rogujski P., Janowski M., Reis R.L., Lukomska B., Walczak P., Oliveira J.M.: Methacrylated gellan gum and hyaluronic acid hydrogel blends for image-guided neurointerventions. Journal of Materials Chemistry B 8 (2020) 5928-5937.
  • [15] Ronca A., D’Amora U., Raucci M.G., Lin H., Fan Y.J., Zhang X.D., Ambrosio L.: A Combined Approach of Double Network Hydrogel and Nanocomposites Based on Hyaluronic Acid and Poly(ethylene glycol) Diacrylate Blend. Materials 11 (2018) 2454.
  • [16] Pokorny M., Rassushin V., Wolfova L., Velebny V.: Increased Production of Nanofibrous Materials by Electroblowing From Blends of Hyaluronic Acid and Polyethylene Oxide. Polymer Engineering and Science 56 (2016) 932-938.
  • [17] Chung E.J., Jakus A.E., Shah R.N.: In situ forming collagen- -hyaluronic acid membrane structures: Mechanism of self-assembly and applications in regenerative medicine. Acta Biomaterialia 9 (2013) 5153-5161.
  • [18] Taguchi T., Ikoma T., Tanaka J.: An improved method to prepare hyaluronic acid and type II collagen composite matrices. Journal of biomedical materials research 61 (2002) 330-336.
  • [19] Park S.N., Lee H.J., Lee K.H., Suh H.: Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomaterials 24 (2003) 1631-1641.
  • [20] Lin Y.K., Liu D.C.: Studies of novel hyaluronic acid-collagen sponge materials composed of two different species of type I collagen. Journal of Biomaterials Applications 21 (2007) 265-281.
  • [21] Hu X., Ricci S., Naranjo S., Hill Z., Gawason Z.: Protein and Polysaccharide-Based Electroactive and Conductive Materials for Biomedical Applications. Molecules 26 (2021) 4499.
  • [22] Dong X., Zhang Y.Q.: An insight on egg white: From most common functional food to biomaterial application. Journal of Biomedical Materials Research 109 (2021) 1045-1058.
  • [23] Mahobia S., Bajpai J., Bajpai A.K.: An In-vitro Investigation of Swelling Controlled Delivery of Insulin from Egg Albumin Nanocarriers. Iranian Journal of Pharmaceutical Research 15 (2016) 695-711.
  • [24] OliveIra S.A., Silva B.C., Riegel-Vidotti I.C., Urbadno A., Sousa-Faria Tischer P.C.,Tischer C.A.: Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb. International Journal of Biological Macromolecules 97 (2017) 642-653.
  • [25] Hamad G.M., Taha T.H., Hafez E.E., Sohaimy S.: Physicochemical, Molecular and Functional Characteristics of Hyaluronic Acid as a Functional Food. American Journal of Food Technology 12 (2017) 72-85.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89801e07-59b7-4c12-bfb4-4cf307aa5609
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.