Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Product reliability design optimization is affected by epistemic uncertainty greatly, which leaves significant risks in product use. In this paper, a new belief reliability-based design optimization (BRBDO) method under epistemic uncertainty is established to handle this problem. First, the belief reliability theory is introduced into the design optimization problem, and a quantile index is proposed to quantify belief reliability level based on uncertainty theory, through which a rapid analysis method called first order belief reliability analysis (FOBRA) method is developed. Then, according to the different trade-off strategies, two types of design optimization models are established, and corresponding FOBRA-based computation methods are also demonstrated. Finally, several case applications are studied to verify the effectiveness of the analysis and design optimization methods proposed in this paper. The results indicate that the BRODO method with the quantile index can save a lot of computational time with acceptable accuracy and can rationally cope with epistemic uncertainty.
Czasopismo
Rocznik
Tom
Strony
art. no. 163545
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- School of Reliability and Systems Engineering, Beihang University, China
- Science and Technology on Reliability and Environmental Engineering Laboratory, Beihang University, China
autor
- School of Reliability and Systems Engineering, Beihang University, China
- Science and Technology on Reliability and Environmental Engineering Laboratory, Beihang University, China
autor
- Science and Technology on Reliability and Environmental Engineering Laboratory, Beihang University, China
- School of Aeronautic Science and Engineering, Beihang University, China
autor
- School of Reliability and Systems Engineering, Beihang University, China
- Science and Technology on Reliability and Environmental Engineering Laboratory, Beihang University, China
Bibliografia
- 1. Bae H, Grandhi R, Canfield R. An approximation approach for uncertainty quantification using evidence theory. Reliability Engineering & System Safety 2004;86(3):215-225, https://doi.org/10.1016/j.ress.2004.01.011.
- 2. Ben-Haim Y, Elishakoff I. Convex models of uncertainty in applied mechanics, Elsevier: 2013.
- 3. Cai K, Wen C, Zhang M. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context. Fuzzy Sets and Systems 1991;42(2):145-172, https://doi.org/10.1016/0165-0114(91)90143-e.
- 4. Chen Y, Wen M, Kang R, Zhang Q. Belief Reliability-based Design Optimization of Structures. Proceedings of the 29th European Safety and Reliability Conference (ESREL); 2020, https://doi.org/10.3850/978-981-14-8593-0_3883-cd.
- 5. Cremona C, Gao Y. The possibilistic reliability theory: theoretical aspects and applications. Structural Safety 1997;19(2):173-201, https://doi.org/10.1016/s0167-4730(97)00093-3.
- 6. Du X, Chen W. Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design. Journal of Mechanical Design 2004;126(2):225-233, https://doi.org/10.1115/1.1649968.
- 7. Freitag S, Peters S, Edler P, Meschke G. Reliability-based optimization of structural topologies using artificial neural networks. Probabilistic Engineering Mechanics 2022;70:103356, https://doi.org/10.1016/j.probengmech.2022.103356.
- 8. Guo H, Liu D, Hu G, Liang L. Method of reliability design optimization using evidence theory and interval analysis. Journal of Mechanical Engineering 2008;44(12):35-41, https://doi.org/10.3901/JME.2008.12.035.
- 9. Hasofer A, Lind N. Exact and Invariant Second-moment Code Format. Journal of Engineering Mechanics 1974;1(100):111-121, https://doi.org/10.1061/jmcea3.0001848.
- 10. Hassani H, Khodaygan S. Reliability-based optimal tolerance design of mechanical systems including epistemic uncertainty. International Journal of Mechanics and Materials in Design 2022:1-18, https://doi.org/10.1007/s10999-022-09629-2.
- 11. Hu L, Kang R, Pan X, Zuo D. Risk assessment of uncertain random system—Level-1 and level-2 joint propagation of uncertainty and probability in fault tree analysis. Reliability Engineering & System Safety 2020;198:106874, https://doi.org/10.1016/j.ress.2020.106874.
- 12. Jiang C, Han X, Liu G. Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval. Computer Methods in Applied Mechanics & Engineering 2007;196(49-52):4791-4800, https://doi.org/10.1016/j.cma.2007.03.024.
- 13. Kang R. Belief reliability thoery and methodology. Singapore, Springer: 2021.
- 14. Kang R, Zhang Q, Zeng Z, Zio E, Li X. Measuring reliability under epistemic uncertainty: Review on non-probabilistic reliability metrics. Chinese Journal of Aeronautics 2016;29(3):571-579, https://doi.org/10.1016/j.cja.2016.04.004.
- 15. Kiureghian AD, Ditlevsen O. Aleatory or epistemic? Does it matter? Structural Safety 2009;31(2):105-112, http://doi.org/10.1016/j.strusafe.2008.06.020.
- 16. Levitin G, Finkelstein M, Huang H-Z. Analysis and optimal design of systems operating in a random environment and having a rescue option. International Journal of General Systems 2019;48(2):170-185, https://doi.org/10.1080/03081079.2018.1549040.
- 17. Li X, Wu J, Liu L, Wen M, Kang R. Modeling Accelerated Degradation Data Based on the Uncertain Process. IEEE Transactions on Fuzzy Systems 2018;27(8):1532-1542, https://doi.org/10.1109/tfuzz.2018.2883016.
- 18. Liu B. Uncertainty Theory. 2nd ed. Berlin, Springer-Verlag: 2007.
- 19. Liu B. Some research problems in uncertainy theory. Journal of Uncertain Systems 2009;3(1):3-10.
- 20. Liu B. Uncertain risk analysis and uncertain reliability analysis. Journal of Uncertain Systems 2010;4(3):163-170.
- 21. Melchers R, Beck A. Structural Reliability Analysis and Prediction. 3rd ed, John Wiley & Sons Ltd: 2018. https://doi.org/10.1002/9781119266105
- 22. Meng Z, Zhou H, Li G, Yang D. A decoupled approach for non-probabilistic reliability-based design optimization. Computers & Structures 2016;175:65-73, https://doi.org/10.1016/j.compstruc.2016.06.008.
- 23. Mourelatos Z, Zhou J. Reliability Estimation and Design with Insufficient Data Based on Possibility Theory. AIAA Journal 2005;43(8):1696-1705, https://doi.org/10.2514/1.12044.
- 24. Mourelatos Z, Zhou J. A Design Optimization Method Using Evidence Theory. Journal of Mechanical Design 2006;128(4):901-908, https://doi.org/10.1115/detc2005-84693.
- 25. Rackwitz R, Flessler B. Structural reliability under combined random load sequences. Computers & Structures 1978;9(5):489-494, https://doi.org/10.1016/0045-7949(78)90046-9.
- 26. Tillman F, Kuo W, Hwang C, Grosh D. Bayesian reliability & availability-a review. IEEE Transactions on reliability 1982;31(4):362-372, https://doi.org/10.1016/0026-2714(83)90819-3.
- 27. Wang P, Yang L, Zhao N, Li L, Wang D. A new SORM method for structural reliability with hybrid uncertain variables. Applied Sciences 2020;11(1):346, https://doi.org/10.3390/app11010346.
- 28. Wen M, Han Q, Yang Y, Kang R. Uncertain optimization model for multi-echelon spare parts supply system. Applied Soft Computing 2017;56:646-654, https://doi.org/10.1016/j.asoc.2016.07.057.
- 29. Wen M, Kang R. Reliability analysis in uncertain random system. Fuzzy Optimization and Decision Making 2016;15(4):491-506, https://doi.org/10.1007/s10700-016-9235-y.
- 30. Yang L, Bi S, Faes MG, Broggi M, Beer M. Bayesian inversion for imprecise probabilistic models using a novel entropy-based uncertainty quantification metric. Mechanical systems and signal processing 2022;162:107954, https://doi.org/10.1016/j.ymssp.2021.107954.
- 31. Youn B, Choi K, Yang R, Gu L. Reliability-based design optimization for crashworthiness of vehicle side impact. Structural & Multidisciplinary Optimization 2004;26:272-283, https://doi.org/10.1007/s00158-003-0345-0.
- 32. Zeng Z, Wen M, Kang R. Belief reliability: a new metrics for products’ reliability. Fuzzy Optimization and Decision Making 2013;12(1):15-27, https://doi.org/10.1007/s10700-012-9138-5.
- 33. Zhang Q, Kang R, Wen M. Belief Reliability for Uncertain Random Systems. IEEE Transactions on Fuzzy Systems 2018;26(6):3605-3614, https://doi.org/10.1109/tfuzz.2018.2838560.
- 34. Zhou J, Mourelatos Z. A sequential algorithm for possibility-based design optimization. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2006, https://doi.org/10.1115/detc2006-99232.
- 35. Zhu Y. Functions of uncertain variables and uncertain programming. Journal of Uncertain Systems 2012;6(4):278-288.
- 36. Zu T, Kang R, Wen M. Graduation formula: a new method to construct belief reliability distribution under epistemic uncertainty. Journal of Systems Engineering and Electronics 2020;31(3):8, https://doi.org/10.23919/jsee.2020.000038.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8973e425-6055-4dcd-ae43-02515bcefd3a