Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The West Kazakhstan region of the Republic of Kazakhstan occupies an area equal to 151,339 km2. In the land structure, 69.7% of the area is occupied by agricultural land. The region has great prospects for the development of the livestock industry. However, uneven territorial availability of water resources is a limiting factor in increasing the amount of livestock in the region. The purpose of the study is to monitor underground water sources in the West Kazakhstan region of the Republic of Kazakhstan to assess the zonality of their placement. The boundaries of natural and climatic zones on the territory of the region were laid over the publicly available cartographic materials on the hydrological data of the distribution of groundwater. The water source monitoring was carried out by examining their actual condition in specific geographical locations, including using remote sensing methods, with a further determination of quantitative and qualitative parameters. The paper considers the state and problems of water supply at the pastures in the natural and climatic zones of the West Kazakhstan region. The region is characterized by the use of groundwater in the water supply of pasture lands. Underground springs have a certain zonality in their location, manifest themselves at different depths corresponding to different geological horizons, and differ in a wide variation of water mineralization. In the dry steppe zone, it is recommended to use the aquiferous mid-upper quaternary alluvial, aquiferous upper Pliocene Akchagyl, and aquiferous upper cretaceous Maastricht horizons. The water sources used have depths of up to 120 meters, and the mineralization varies from 0.2 to 9.1 g/dm3. In the semi-desert zone, the upper-quaternary aquiferous marine Khvalynsky and the lower-middle-quaternary aquiferous marine Baku-Khazar horizons are recommended. The water sources used have depths of up to 90 meters, and the mineralization varies from 0.2 to 11.8 g/dm3. The semi-desert zone is characterized by the use of springs with depths up to 80 meters. The mineralization of water in the permeable modern Aeolian horizon is more often low (0.11–0.9 g/dm3) and rarely brackish (1.1–9.36 g/dm3).
Czasopismo
Rocznik
Tom
Strony
56--65
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Zhangir Khan West Kazakhstan Аgrarian Technical University, 51 Zhangir Khan Str., 09009, Uralsk, Republic of Kazakhstan
autor
- Zhangir Khan West Kazakhstan Аgrarian Technical University, 51 Zhangir Khan Str., 09009, Uralsk, Republic of Kazakhstan
autor
- Zhangir Khan West Kazakhstan Аgrarian Technical University, 51 Zhangir Khan Str., 09009, Uralsk, Republic of Kazakhstan
autor
- Zhangir Khan West Kazakhstan Аgrarian Technical University, 51 Zhangir Khan Str., 09009, Uralsk, Republic of Kazakhstan
autor
- Zhangir Khan West Kazakhstan Аgrarian Technical University, 51 Zhangir Khan Str., 09009, Uralsk, Republic of Kazakhstan
autor
- Zhangir Khan West Kazakhstan Аgrarian Technical University, 51 Zhangir Khan Str., 09009, Uralsk, Republic of Kazakhstan
Bibliografia
- 1. Akintorinwa, O.J., Atitebi, M.O., Akinlalu, A.A. 2020. Hydrogeophysical and aquifer vulnerability zonation of a typical basement complex terrain: A case study of OdodeIdanre southwestern Nigeria. Heliyon, 6(8), E04549. https://doi.org/10.1016/j.heliyon.2020.e04549
- 2. Ansari-Renani, H.R., Rischkowsky, B., Mueller, J.P., Momen, S., Moradi, S. 2013. Nomadic pastoralism in southern Iran. Pastoralism 3, 11. https://doi.org/10.1186/2041-7136-3-11
- 3. Azlaoui, M., Zeddouri, A., Haied, N., Nezli, I.E., Foufou, A. 2021. Assessment and mapping of groundwater quality for irrigation and drinking in a semi-arid area in Algeria. Journal of Ecological Engineering, 22(8), 19–32. https://doi.org/10.12911/22998993/140369
- 4. Berhanu, K.G., Hatiye, S.D. 2020. Identification of groundwater potential zones using proxy data: Case study of Megech Watershed, Ethiopia. Journal of Hydrology: Regional Studies, 28, 100676. https://doi.org/10.1016/j.ejrh.2020.100676
- 5. Brauns, B., Chattopadhyay, S., Lapworth, D.J., Loveless, S.E., MacDonald, A.M., McKenzie, A.A., Sekhar, M., Nara, S.N.V., Srinivasan, V. 2022. Assessing the role of groundwater recharge from tanks in crystalline bedrock aquifers in Karnataka, India, using hydrochemical tracers. Journal of Hydrology X, 15(1–2), 100121. https://doi.org/10.1016/j.hydroa.2022.100121
- 6. Chen, Z., Wu, X. 2019. Research on regional energy efficiency based on GIS technology and image quality processing. Journal of Visual Communication and Image Representation, 62, 410–417. https://doi.org/10.1016/J.JVCIR.2019.06.008
- 7. Davybida, L., Kasiyanchuk, D., Shtohryn, L., Kuzmenko, E., Tymkiv, M. 2018. Hydrogeological conditions and natural factors forming the regime of groundwater levels in the Ivano-Frankivsk region (Ukraine). Journal of Ecological Engineering, 19(6), 34–44. https://doi.org/10.12911/22998993/91883
- 8. Galsa, A., Toth, A., Szijarto, M., Pedretti, D., Madl-Szonyi, J. 2022. Interaction of basin-scale topography- and salinity-driven groundwater flow in synthetic and real hydrogeological systems. Journal of Hydrology, 609, 127695.
- 9. Gao, J.L., Meng, B.P., Liang, T.G., Feng, Q.S., Ge, J., Yin, J.P., Wu, C.X., Cui, X., Hou, M.J., Liu, J. 2019. Modeling alpine grassland forage phosphorus based on hyperspectral remote sensing and a multi-factor machine learning algorithm, in the east of Tibetan Plateau, China. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 104–117. http://dx.doi.org/10.1016/j.isprsjprs.2018.11.015
- 10. Glazer, A.N., Likens, G.E. 2012. The water table: The shifting foundation of life on land. AMBIO, 41, 657–669. https://doi.org/10.1007/s13280-012-0328-8
- 11. Halimani, T., Marandure, T., Chikwanha, O.C., Molotsi, A.H., Abiodun, B.J., Dzama, K., Mapive, C. 2021. Smallholder sheep farmers’ perceived impact of water scarcity in the dry ecozones of South Africa: Determinants and response strategies. Climate Risk Management, 34, 100369. https://doi.org/10.1016/j.crm.2021.100369
- 12. Kpegli, K.A.R., Alassane, A., van der Zee, S.E.A.T.M., Boukari, M., Mama, D. 2018. Development of a conceptual groundwater flow model using a combined hydrogeological, hydrochemical and isotopic approach: A case study from southern Benin. Journal of Hydrology: Regional Studies, 18, 50–67. https://doi.org/10.1016/j.ejrh.2018.06.002
- 13. Marchant, B.P., Bloomfield, J.P. 2018. Spatiotemporal modelling of the status of groundwater droughts. Journal of Hydrology, 564, 397–413. https://doi.org/10.1016/j.jhydrol.2018.07.009
- 14. Moritz, M., Bebisse, C.L., Drent, A.K., Kari, S., Arabi, M., Scholte, P. 2013. Rangeland governance in an open system: Protecting transhumance corridors in the Far North Province of Cameroon. Pastoralism 3, 26. https://doi.org/10.1186/2041-7136-3-26
- 15. Nasiyev, B.N., Tulegenova, D., Zhanatalapov, N., Bekkaliev A., Shamsutdinov, Z.Sh. 2015. Studying the impact of grazing of the current state of grassland in the semi-desert zone. Biosciences Biotechnology Research Asia, 12(2), 1735–1742.
- 16. Rajanayaka, Ch., Weir, J., Kerr, T., Thomas, J. 2021. Sustainable water resource management using surface-groundwater modelling: Motueka-Riwaka Plains, New Zealand. Watershed Ecology and the Environment, 3, 38–56. https://doi.org/10.1016/j.wsee.2021.08.001
- 17. Rotz, R., Milewski, A., Rasmussen, T.C. 2020. Transient evolution of inland freshwater lenses: Comparison of numerical and physical experiments. Water, 12(4), 1154. https://doi.org/10.3390/w12041154
- 18. Ongayev, M., Denizbayev, S., Ozhanov, G., Shadyarov, T. 2021. Underground water supply to pastures. International Journal of Mechanical Engineering, 3(6), 98–103.
- 19. Ongayev, M., Sultanova, Z., Denizbayev, S., Ozhanov, G., Abisheva, S. 2019. Engineering and process infrastructure of the agro-industrial complex. International Journal of Emerging Trends in Engineering Research, 7(12), 879–885. https://doi.org/10.30534/ijeter/2019/257122019
- 20. Osmanaj, L., Hajra, A., Berisha, A. 2021. Determination of groundwater protection zones of the Pozharan wellfield using hydrogeological mudflow model. Journal of Ecological Engineering, 22(3), 73–81. https://doi.org/10.12911/22998993/132429
- 21. Siebert, S., Kummu, M., Porkka, M., Doll, P., Ramankutty, N., Scanlon, R. 2015. A global dataset of the extent of irrigated land from 1900 to 2005. Hydrology and Earth System Sciences, 19(3), 1521–1545. https://doi.org/10.5194/HESS-19-1521-2015
- 22. Tugjamba, N., Walkerden, G., Miller, F. 2021. Climate change impacts on nomadic herders’ livelihoods and pastureland ecosystems: A case study from Northeast Mongolia. Regional Environmental Change, 21, 105. https://doi.org/10.1007/s10113-021-01829-4
- 23. Tymkiv, M., Kasiyanchuk, D. 2019. Research of data sequences of groundwater levels with gaps. Journal of Ecological Engineering, 20(3), 141–151. https://doi.org/10.12911/22998993/99744
- 24. Wang, X, Zhu, J., Cao, L., Wang, S. 2020. The status of foreign advanced pasture water supply technology. IOP Conference Series: Earth and Environmental Science, 525, 012063. https://doi.org/10.1088/1755-1315/525/1/012063
- 25. Zhang, W.B.,Yang, X.C., Manlike, A., Jin, Y.X., Zheng, F.L., Guo, J., Shen, G., Zhang, Y.H., Xu, B. 2019. Comparative study of remote sensing estimation methods for grassland fractional vegetation coverage – a grassland case study performed in Ili prefecture, Xinjiang, China. International Journal of Remote Sensing, 40(5–6), 2243–2258. https://doi.org/10.1080/01431161.2018.1508918
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-896f133d-aec0-4a8f-8964-54eec8bd7a30